[1]李楠,赖绍.一类阻尼Euler-Bernoulli梁方程整体解的适定性[J].四川师范大学学报(自然科学版),2004,(04):335-338.
 LI Nan,LAI Shao-yong (College of Mathematics and Software Science,Sichuan Normal University,et al.[J].Journal of SichuanNormal University,2004,(04):335-338.
点击复制

一类阻尼Euler-Bernoulli梁方程整体解的适定性()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2004年04期
页码:
335-338
栏目:
出版日期:
1900-01-01

文章信息/Info

作者:
李楠; 赖绍
四川师范大学数学与软件科学学院; 四川师范大学数学与软件科学学院 四川成都610066; 四川成都610066
Author(s):
LI NanLAI Shao-yong (College of Mathematics and Software Science Sichuan Normal University Chengdu 610066 Sichuan)
关键词:
Euler-Bernoulli梁方程 整体解 Cauchy问题
分类号:
O302
摘要:
研究如下带阻尼Euler Bernoulli方程整体解的适定性utt+auxxxx+2but+cu=f(u), t 0,x∈[0,+∞).就一般非线性项f(u),在Sobolev空间C([0,+∞),Hs([0,+∞)))∩C1([0,+∞),Hs-1([0,+∞)))(s>12)中,给出了此方程初值问题解的存在及唯一性.当f(u)=u2时,则在空间C([0,+∞),L2([0,+∞)))∩C1([0,+∞),H-1([0,+∞)))中得到了该整体解的适定性. 更多还原

相似文献/References:

[1]李姣,张健*.具临界非线性项的随机非线性Schrödinger方程的整体解[J].四川师范大学学报(自然科学版),2010,(02):143.
 LI Jiao,ZHANG Jian.Global Solution for the Stochastic Nonlinear Schrödinger Equation with Critical Nonlinear Term[J].Journal of SichuanNormal University,2010,(04):143.
[2]刘诗焕,赖绍永,朱景文,等.三维空间中一类扰动波方程整体解的渐近性[J].四川师范大学学报(自然科学版),2010,(02):171.
 LIU Shi huan,LAI Shao yong,ZHU Jing wen,et al.The Asymptotic Property of Global Solution for a Perturbed Wave Equation in Three Dimensions Space[J].Journal of SichuanNormal University,2010,(04):171.
[3]刘诗焕,王丹华,朱景文,等.二维空间中一类半线性波方程整体经典解的存在性[J].四川师范大学学报(自然科学版),2011,(01):28.
 LIU Shi huan,WANG Dan hua,ZHU Jing wen,et al.The Existence of Global Solution for a Semilinear Wave Equation in Two Space Dimensions[J].Journal of SichuanNormal University,2011,(04):28.
[4]甘在会,帅鲲.重新尺度化的Klein-Gordon-Zakharov系统的整体存在性[J].四川师范大学学报(自然科学版),2011,(01):110.
 GAN Zai hui,SHUAI Kun.This work was supported by National Natural Science Foundation of China(10671039,10801102) and Sichuan Youth Sciences and Technology Foundation(07ZQ026009)Global Existence for the Rescaled KleinGordonZakharov System[J].Journal of SichuanNormal University,2011,(04):110.
[5]舒级,秦华军.一类具临界指数幂的随机非线性Schrdinger方程[J].四川师范大学学报(自然科学版),2011,(03):285.
 SHU Ji,QIN Hua jun.On a Class of Stochastic Nonlinear Schrdinger Equation with Critical Exponent[J].Journal of SichuanNormal University,2011,(04):285.
[6]王颖,赖绍永.一类Boussinesq方程整体解的渐近理论[J].四川师范大学学报(自然科学版),2005,(02):158.
 WANG Ying,LAI Shao-yong (College of Mathematics and Software Science,Sichuan Normal University,et al.[J].Journal of SichuanNormal University,2005,(04):158.
[7]潘杰,李树勇,黄玉梅.无界区域R~n上GBBM方程解的存在唯一性问题[J].四川师范大学学报(自然科学版),2005,(03):291.
 PAN Jie~,LI Shu-yong~,HUANG Yu-mei~(. Department of Mathematics,et al.[J].Journal of SichuanNormal University,2005,(04):291.
[8]刘诗焕,朱先阳.阻尼Boussinesq波系统的整体解[J].四川师范大学学报(自然科学版),2013,(05):673.
 LIU Shihuan,ZHU Xianyang.The Global Solution of a Damped Boussinesq Wave System[J].Journal of SichuanNormal University,2013,(04):673.
[9]刘倩,张健.一类带无界势的非线性Schrdinger方程的整体解[J].四川师范大学学报(自然科学版),2005,(04):394.
 LIU Qian,ZHANG Jian(College of Mathematics and Software Science,Sichuan Normal University,et al.[J].Journal of SichuanNormal University,2005,(04):394.
[10]邝雪松.带斯塔克势的非线性Schrdinger方程的整体解[J].四川师范大学学报(自然科学版),2005,(04):423.
 KUANG Xue-song(Faculty of Science,Zhanjiang Ocean Univercity,Zhanjiang 088,et al.[J].Journal of SichuanNormal University,2005,(04):423.

备注/Memo

备注/Memo:
四川省重点科研基金资助项目
更新日期/Last Update: 1900-01-01