[1]刘飞,贾正林,回忆.时间延迟和关联噪声对基因转录调节系统统计性质的影响[J].四川师范大学学报(自然科学版),2010,(03):403-409.
 LIU Fei,JIA Zheng lin,HUI Yi.Effects of Time Delay and Crosscorrelated Noises on Statistical Properties of a Gene Transcription Conditioning System[J].Journal of SichuanNormal University,2010,(03):403-409.
点击复制

时间延迟和关联噪声对基因转录调节系统统计性质的影响()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2010年03期
页码:
403-409
栏目:
技术研究及其它
出版日期:
2010-05-26

文章信息/Info

Title:
Effects of Time Delay and Crosscorrelated Noises on Statistical Properties of a Gene Transcription Conditioning System
作者:
刘飞贾正林回忆
(玉溪师范学院 物理系, 云南 玉溪 653100))
Author(s):
LIU FeiJIA ZhenglinHUI Yi
(Department of Physics, Yuxi Normal College, Yuxi 653100, Yunnan)
关键词:
基因转录调节系统 交叉关联噪声 时间延迟 关联函数 弛豫时间
Keywords:
:gene transcription conditioning system crosscorrelated noises time delay correlation function relaxation time
分类号:
O414.22; O415.6
文献标志码:
A
摘要:
研究延迟时间τ和交叉关联噪声对基因转录调节系统关联函数C(s)和弛豫时间TC的影响.在小延迟近似下,利用微扰理论,得到了系统的定态概率分布函数Pst(x).基于Pst(x),通过Stratonovich解耦近似框架导出了C(s)和TC的近似表达式.数值计算结果表明,TC随乘性噪声强度D的变化曲线呈一单峰结构,τ和噪声间正关联时的关联强度λ的增大均使TC增大,而噪声间负关联时|λ|和加性噪声强度α的增大则使TC减小;系统态变量x(蛋白质浓度)的C(s)随时间s呈指数规律衰减,τ对C(s)的影响显示一个临界行为,即存在一个临界值τC,当τ<τC时,τ的增大使C(s)增大,而τ>τC时,使C(s)减小.λ>0时,λ增大使C(s)增大,而λ<0时,使其减小.D对C(s)的影响也显示一个临界行为,即D较小和较大时D的增大对C(s)的影响相反,然而,α的增大只会使C(s)值减小.
Abstract:
The correlation function C(s) and the associated relaxation time TC of the gene transcription conditioning system are investigated in the presence of the crosscorrelated noises and time delay τ. Using the small time delay approximation and the perturbation theory, the stationary probability distribution function(SPDF) is obtained. Based on the SPDF, the expressions of C(s) and TC are derived by means of Stratonovich decoupling ansatz. The results of the numerical computations indicate as follows. (1) the curve of TC versus D (the multiplicative noise intensity) shows a onepeak structure. The peak height of TC increases as τ increases, while TC decreases as α (the additive noise intensity) increases. The increasing |λ| (the crosscorrelation strength between noises) plays an opposite role in TC for the cases of λ>0 and λ<0. (2) C(s) decreases exponentially as the decay time s increases. There is a critical value τC of τ, below which C(s) decreases as τ increases and above which C(s) increases as τ increases. The increasing |λ| plays an opposite role in C(s) when λ>0 and λ<0. Moreover, the increasing D also plays an opposite role in C(s) for small and large D, but C(s) only decreases as α increases.

参考文献/References:

[1] Gammaitoni L, Hanggi P, Jung P, et al. Stochastic resonance[J]. Rev Mod Phys,1998,70:223-287.
[2] Horsthemke W, Lefever R. Noise-Induced Transition[M]. Berlin:Springer-Verlag,1984:12-57.
[3] Agudov N V, Spagnolo B. Noise-enhanced stability of periodically driven metastable states[J]. Phys Rev,2001,E64:035102(R).
[4] Doering C R, Gadoua J C. Resonant activation over a fluctuating barrier[J]. Phys Rev Lett,1992,69:2318-2321.
[5] Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance[J]. J Phys,1981,A14:L453.
[6] Magnasco M O. Forced thermal ratchets[J]. Phys Rev Lett,1993,71:1477-1481.
[7] Spagnolo B, Spezia S, Curcio L, et al. Noise effects in two different biological systems[J]. Eur Phys J B,2009,69:133-146.
[8] 胡岗. 随机力与非线性系统[M]. 上海:上海科技教育出版社,1994:6-22.
[9] Fulinski A, Telejko T. On the effect of interference of additive and multiplicative noises[J]. Phys Lett,1991,A152:11-14.
[10] Jia Y, Li J R. Reentrance Phenomena in a Bistable kinetic model driven by correlated noise[J]. Phys Rev Lett,1997,78:994-997.
[11] Xie C W, Mei D C. Effects of correlated noises on the intensity fluctuation of a single-mode laser system[J]. Phys Lett,2004,A323:421-426.
[12] Mei D C, Xie C W, Zhang L. The stationary properties and the state transition of the tumor cell growth mode[J]. Eur Phys J B,2004,41:107-112.
[13] Frank T D. Delay Fokker-Planck equations,perturbation theory,and data analysis for nonlinear stochastic systems with time delays[J]. Phys Rev,2005,E71:031106.
[14] Bressoff P C, Coombes S. Dynamics of a ring of pulse-coupled oscillators:group-theoretic approach[J]. Phys Rev Lett,1997,79:2791-2794.
[15] Masoller C. Anticipation in the synchronization of chaotic semiconductor lasers with optical feedback[J]. Phys Rev Lett,2001,86:2782-2785.
[16] Wu D, Zhu S Q. Stochastic resonance in a bistable system with time-delayed feedback and non-Gaussian noise[J]. Phys Lett,2007,A363:202-212.
[17] Masoller C. Noise-induced resonance in delayed feedback systems[J]. Phys Rev Lett,2002,88:034102.
[18] Jia Z L. Time-delay Induced reentrance phenomenon in a triple-well potential system driven by cross-correlated noises[J]. Int J Theor Phys,2009,48:226-231.
[19] Jia Z L. Effects of time delay on transient behavior of a time-delayed metastable system subjected to cross-correlated noises[J]. Physica,2008,A387:6247-6251.
[20] Mcadams H H, Arkin A. Stochastic mechanisms in gene expression[J]. Proc Natl Acad Sci USA,1997,94:814-819.
[21] Ahmad K, Henikoff S. Modulation of a transcription factor counteracts heterochromatic gene silencing in drosophila[J]. Cell,2001,104:839-847.
[22] Wijgerde M, Grosveld F, Fraster P. Transcription complex stability and chromatin dynamics in vivo[J]. Nature,1995,377:209-213.
[23] Liu Q, Jia Y. Fluctuations-induced switch in the gene transcriptional regulatory system[J]. Phys Rev,2004,E70:041907.
[24] 王参军,梅冬成. 色交叉关联噪声对基因转录调节系统的影响[J]. 物理学报,2008,57:3983-3988.
[25] Wang J Y, Zhu C L, Jia Y, et al. Effects of nonlinear time delay on a stochastic asymmetric system[J]. Chin Phys Lett,2006,23:1398-1401.
[26] Zeng C H, Xie C W. Stochastic resonance in a gene transcriptional regulatory system with time delay[J]. Chin Phys Lett,2008,25:1587-1590.
[27] Mei D C, Xie C W, Zhang L. Effects of cross correlation on the relaxation time of a bistable system driven by cross-correlated noise[J]. Phys Rev,2003,E68:051102.
[28] Casademunt J, Mannella R, McClintock P V E, et al. Relaxation times of non-Markovian processes[J]. Phys Rev,1987,A35:5183-5190.
[29] Smolen P, Baxter D A, Byrne J H. Frequency selectivity,multistability,and oscillations emerge from models of genetic regulatory systems[J]. Am J Phys,1998,274:C531.
[30] Hernandez-Machado A, San Miguel M, Sancho J M. Relaxation time of processes driven by multiplicative noise[J]. Phys Rev,1984,A29:3388-3396.

备注/Memo

备注/Memo:
收稿日期:2009-08-24基金项目:云南省自然科学基金(2008CD214)资助项目作者简介:刘飞(1974—),男,讲师,主要从事理论物理的研究
更新日期/Last Update: 2010-05-28