[1]杨大鹏,王红霞,赵 耀,等.动载荷作用下幂硬化弹塑性弯曲裂纹塑性区[J].四川师范大学学报(自然科学版),2015,(04):602-608.[doi:doi:10.3969/j.issn.1001-8395.2015.04.022]
 YANG Dapeng,Wang Hongxia,ZHAO Yao,et al.Study on the Slightly Curved Elasticity-Plasticity Crack Tip of Power-LowHardening Plasticity Area Under Dynamic Loads[J].Journal of SichuanNormal University,2015,(04):602-608.[doi:doi:10.3969/j.issn.1001-8395.2015.04.022]
点击复制

动载荷作用下幂硬化弹塑性弯曲裂纹塑性区()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2015年04期
页码:
602-608
栏目:
技术应用及其他
出版日期:
2015-08-26

文章信息/Info

Title:
Study on the Slightly Curved Elasticity-Plasticity Crack Tip of Power-Low Hardening Plasticity Area Under Dynamic Loads
作者:
杨大鹏12 王红霞3 赵 耀2 李天匀2
1. 郑州职业技术学院 机械工程系, 河南 郑州 450121; 2. 华中科技大学 船舶与海洋工程学院, 湖北 武汉 430074; 3. 郑州职业技术学院 材料工程系, 河南 郑州 450121
Author(s):
YANG Dapeng12 Wang Hongxia3 ZHAO Yao2 Li Tianyun2
1. Mechanical Engineering Department, Zhengzhou Technical College, Zhengzhou 450121, Henan; 2. School of Naval Architecture & Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei; 3. Material Engineering Department,
关键词:
词:幂硬化材料 弯曲裂纹 动态塑性区 动态作用应力 二阶摄动方法
Keywords:
hardened material curved crack dynamic plasticity area dynamic applied stresses a second order perturbation solution
分类号:
TB301
DOI:
doi:10.3969/j.issn.1001-8395.2015.04.022
文献标志码:
A
摘要:
主要研究动载荷作用下的硬化材料弹塑性弯曲裂纹尖端的塑性区问题.综合考虑动态作用应力,塑性区域边界上动态正应力与动态剪应力,利用二阶摄动方法计算硬化材料弹塑性弯曲裂纹尖端的动态塑性区.作图分析弹塑性弯曲裂纹尖端动态塑性区尺寸与材料硬化指数之间的变化关系.在幂硬化材料中,弹塑性弯曲裂纹尖端动态塑性区随着材料硬化指数n的增大而减少,当n等速均匀增加时,弹塑性弯曲裂纹尖端动态塑性区尺寸加速减少,减少的幅度越来越大.当材料的硬化指数相同时,弯曲裂纹尖端动态塑性区尺寸随动载荷的不断减小而逐渐减小.建立了一个计算硬化材料弹塑性弯曲裂纹动态塑性区尺寸的理论模型.
Abstract:
In this article, elastic-plastic curved crack tip plasticity area in hardened material under dynamic loads has been studied and curved crack tip plasticity area has been calculated as a practical application of a second order perturbation method with the effects of dynamic applied stresses, dynamic normal and shear stresses on the boundaries of plasticity area, the relationship between curved crack tip dynamic plasticity area size and hardening exponents has been analysed. Curved crack tip dynamic plasticity area size decreases when hardening exponents increase in hardened material. The crack tip dynamic plasticity area size decreases as hardening exponents increasing evenly. Curved crack tip dynamic plasticity area size decreases when external loads decrease with the same hardening exponents. A theoretical model of curved crack tip dynamic plasticity area size calculation has been established in hardened material.

参考文献/References:

[1] Banichuk N V. Determination of the form of a curvilinear crack by small parameter technique[J]. Izv, An SSSR MTT,1970,7-2:130-137.
[2] Goldstein R V, Salganik R L. Plane problem of curvilinear cracks in an elastic solid[J]. Izv, An SSSR MTT,1970,7(3):69-82.
[3] Goldstein R V, Salganik R L. Brittle fracture of solids with arbitrary cracks[J]. Int J Fracture,1974,10:507-523.
[4] Cotterell B, Rice J R. Slightly curved or kinked cracks[J]. Int J Fracture,1980,16:155-169.
[5] Karihaloo B L, Keer L M, Nemat-Nasser S, et al. Approximate description of crack Kinking and curving[J]. J Appl Mech,1981,48:515-519.
[6] Sumi Y, Nemat-Nasser S, Keer L M. On crack branching and curving in a finite body[J]. Int J Fracture,1983,21:67-79.
[7] Sumi Y. A note on the first order perturbation solution of a straight crack with slightly branched and curved extension under a general geometric and loading condition[J]. Engng Fracture Mech,1986,24:479-481.
[8] Sumi Y, University Y N. A Second Order Perturbation Solution of a Non-Collinear Crack And Its Application to Crack Path Prediction of Brittle Fracture in Weldment[J]. Naval Architecture & Ocean Engineering,1990,28.
[9] Wu C H. Explicit asymptotic solution for the maximum-energy-release-rate problem[J]. Int J Solids Structures,1979,15:561-566.
[10] Amestoy M, Leblond J B. On the criterion giving the direction of propagation of cracks in the Griffith theory[J]. Comptes Rendus,1985,301(2):969-972.
[11] Richard H A, Fulland M, Sander M. Theoretical crack path prediction [J]. Fatigue and Fracture of Engineering Materials and Structures,2005,28(1/2):3-12.
[12] 杨春,叶景才. 基于模糊层次分析法的材料力学评价模型[J]. 四川师范大学学报:自然科学版,2013,36(5):745-749.
[13] 丁遂栋,孙利民. 断裂力学[M]. 北京:机械工业出版社,1997:148-169.
[14] 杨卫. 宏微观断裂力学[M]. 南京:国防工业出版社,1995:65-70.
[15] 杨大鹏,赵耀,白玲. 准静载荷作用下的弹塑性微弯延伸裂纹塑性区[J]. 应用力学学报,2010,27(2):401-405.
[16] 杨大鹏,赵耀,白玲. 准静载荷作用下的弹塑性微弯延伸裂纹张开位移[J]. 应用力学学报,2010,27(3):574-578.
[17] 胡志忠,曹淑珍. 形变硬化指数与强度的关系[J]. 西安交通大学学报,1993,27(6):71-76.
[18] 陈篪. 考虑到硬化的塑性区修正[J]. 力学学报,1975,2:78-80.

备注/Memo

备注/Memo:
作者简介:杨大鹏(1974—),男,副教授,主要从事船舶与海洋工程结构强度的研究,E-mail:ydpzpysh@163.com
更新日期/Last Update: 1900-01-01