[1]冯菊,李树勇*.一类半线性含可变时滞脉冲抛物型方程解振动的充要条件[J].四川师范大学学报(自然科学版),2010,(02):162-165.
 FENG Ju,LI Shu yong.Necessary and Sufficient Conditions for Oscillation for a Class of Semilinear Impulsive Parabolic Equations with Variable Delays[J].Journal of SichuanNormal University,2010,(02):162-165.
点击复制

一类半线性含可变时滞脉冲抛物型方程解振动的充要条件()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2010年02期
页码:
162-165
栏目:
出版日期:
2010-04-05

文章信息/Info

Title:
Necessary and Sufficient Conditions for Oscillation for a Class of Semilinear Impulsive Parabolic Equations with Variable Delays
作者:
冯菊1李树勇2*
1.西华师范大学美术学院,四川南充637002;2.四川师范大学数学与软件科学学院,四川成都610066
Author(s):
FENG Ju1LI Shuyong2
1. College of Fine Arts, Xihua Normal University, Nanchong 637002, Sichuan; 2. College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068, Sichuan
关键词:
脉冲 时滞 抛物型方程 振动 充要条件
Keywords:
impulsive delay parabolic equations oscillation necessary and sufficient condition
分类号:
O175.26
文献标志码:
A
摘要:
研究一类半线性含可变时滞脉冲抛物型方程解的振动性质.首先利用分析技巧,给出一个脉冲时滞微分方程解振动的条件.然后,利用平均法,将该方程解振动性问题转化为相应脉冲时滞微分方程解振动性问题,进而,在齐次Neumann边界条件下获得判别该类方程解振动的充要条件
Abstract:
In this paper, oscillation of solution for a class of semilinear impulsive parabolic equations with variable delays is discussed. Some sufficient conditions for oscillation of impulsive differential equations are obtained by using analysis skill at first. Using averaging method, oscillation of the equations is transformed into the oscillation of the corresponding impulsive differential equations. Some necessary and sufficient conditions for oscillation of their solutions are obtained under the homogeneous Neumann boundary condition

参考文献/References:

[1] Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations[M]. Singapore:World Scientific,1989.
[2] Zhao A M, Han M, Yan J R. Necessary and sufficient conditions for oscillations of delay equations with impulses[J]. J Appl Math Lett,1997,10:23-29.
[3] Yan J R, Kou C H. Oscillation of solutions of impulsive delay differential equations[J]. J Math Anal Appl,2001,254:358-370.
[4] 傅希林,闫宝强,刘衍胜. 脉冲微分系统引论[M]. 北京:科学出版社,2005.
[5] 萧红,亓国强,李学臣. 高阶中立型泛函微分方程解的振动性与渐近性[J]. 郑州大学学报:理学版,1998,30(2):12-18.
[6] 李树勇. 一类时滞偏生态模型的振动性[J]. 四川师范大学学报:自然科学版,2002,25(6):595-597.
[7] 廖新元,欧阳自根. 一阶中立型微分方程解的振动性[J]. 广西师范大学学报:自然科学版,2003,21(3):52-55.
[8] 刘兰初,周勇. 一类时标非线性微分方程的振动性[J]. 广西师范大学学报:自然科学版,2005,23(4):46-48.
[9] 冯菊, 李树勇. 一类非线性时滞抛物方程解振动的充要条件[J]. 西华师范大学学报:自然科学版,2007,28(2):158-160.
[10] Fu X L, Liu X, Sivaloganathan S. Oscillation criteria for impulsive parabolic differential equations with delay[J]. J Math Anal Appl,2002,268:647-664.
[11] Fu X L, Shiau L J. Oscillation criteria for impulsive parabolic boundary value problem with delay[J]. Appl Math Comput,2004,153:587-599.
[12] 燕居让. 脉冲时滞抛物型方程解的振动性[J]. 数学学报,2004,47(3):579-586.
[13] Cui B T, Han M, Yang H. Some sufficient conditions for oscillation of impulsive delay hyperbolic systems with robin boundary conditions[J]. J Comput Appl Math,2005,180:365-375.
[14] Li W N, Han M. Oscillation of solutions for certain impulsive vector parabolic differential equations with delays[J]. J Math Appl Anal,2007,326:363-371.
[15] Li W N, Han M, Fan W M. Necessary and sufficient conditions for oscillation of impulsive parabolic differential equations with delays[J]. J Appl Math Lett,2005,18:1149-1155.
[16] Fu X L, Li X D. Oscillation of higher order impulsive differential equations of mixed type with constant argument at fixed time[J]. Mathematical and Computer Modelling,2008,48:776-786.
[17] Shen J H, Zou Z R. Oscillation criteria for first-order impulsive differential equations with positive and negative coefficients[J]. J Computational and Applied Mathematics,2008,217:28-37.
[18] Agarwal R P, Karakoc F. Oscillation of impulsive partial difference equations with continuous variables[J]. Mathematical and Computer Modelling,2009,50:1262-1278.
[19] Huang M G, Feng W Z. Computers Mathematics with Applications,2010,59:18-30.

相似文献/References:

[1]邵远夫,艾武.一类脉冲多时滞互惠系统周期解的存在性与稳定性[J].四川师范大学学报(自然科学版),2012,(01):33.
 SHAO Yuan fu,AI Wu.The Existence and Stability of Periodic Solution for a Multidelay Mutualism System with Impulses[J].Journal of SichuanNormal University,2012,(02):33.
[2]王五生,李自尊.一类新的非线性时滞积分不等式及其应用[J].四川师范大学学报(自然科学版),2012,(02):180.
 WANG Wu-sheng,LI Zi-zun.A New Nonlinear Retarded Integral Inequality and Its Application[J].Journal of SichuanNormal University,2012,(02):180.
[3]赵君平,于育民.一类病菌与免疫系统作用模型的定性分析[J].四川师范大学学报(自然科学版),2012,(02):202.
 ZHAO Jun-ping,YU Yu-min.Qualitative Analysis of a Model with the Action Between Immune System and Bacteria[J].Journal of SichuanNormal University,2012,(02):202.
[4]王海峰,唐清干*,徐凌云.带有B-D反应项和阶段结构的时滞脉冲微分方程的定性分析[J].四川师范大学学报(自然科学版),2010,(06):750.
 WANG Hai feng,TANG Qin gan,XU Ling yun.Qualitative Analysis of the Delayed StageStructured PredatorPrey Systemwith Impulsive Perturbations and BD Functional Response[J].Journal of SichuanNormal University,2010,(02):750.
[5]周效良,王五生.高阶拟线性变时滞差分方程正解的存在性[J].四川师范大学学报(自然科学版),2010,(06):760.
 ZHOU Xiao liang,WANG Wu sheng.Existence of Positive Solutions of Higher Order QuasilinearDifference Equations with Variable Delay[J].Journal of SichuanNormal University,2010,(02):760.
[6]徐昌进,廖茂新.具有时滞的脉冲互惠系统的正周期解的存在性[J].四川师范大学学报(自然科学版),2011,(02):186.
 XU Changjin,LIAO Maoxin.The Existence of Positive Periodic Solutions of a Mutual and Impulsive System with Time Delay[J].Journal of SichuanNormal University,2011,(02):186.
[7]李亚男,王玉光.一类不确定系统的保性能变结构控制[J].四川师范大学学报(自然科学版),2011,(05):663.
 LI Ya nan,WANG Yu guang.Guaranteed Cost Variable Structure Control of a Class of Uncertain Systems[J].Journal of SichuanNormal University,2011,(02):663.
[8]徐昌进.具有时滞和Holling III型功能反应函数的离散捕食模型的周期解[J].四川师范大学学报(自然科学版),2013,(05):686.
 XU Changjin.Periodic Solutions of a Delayed PredatorPrey Model with Holling III Functional Response[J].Journal of SichuanNormal University,2013,(02):686.
[9]韩仲明.非线性时滞系统的K-稳定性[J].四川师范大学学报(自然科学版),2004,(03):259.
 HAN Zhong-ming (Department of Mathematics,Leshan Teachers College,Leshan 00,et al.[J].Journal of SichuanNormal University,2004,(02):259.
[10]王长有,李树勇,杨治国.含时滞的反应扩散方程周期解的存在唯一性[J].四川师范大学学报(自然科学版),2004,(04):339.
 WANG Chang-you,LI Shu-yong,YANG Zhi-guo (College of Mathematics and Software Science,et al.[J].Journal of SichuanNormal University,2004,(02):339.

备注/Memo

备注/Memo:
收稿日期:2008-12-26基金项目:国家自然科学基金(10671133)和四川省学术和技术带头人培养资金(1200311)资助项目*联系作者简介:李树勇(1964—),男,教授,主要从事偏泛函微分方程的研究
更新日期/Last Update: 2010-04-12