[1]王海峰,唐清干*,徐凌云.带有B-D反应项和阶段结构的时滞脉冲微分方程的定性分析[J].四川师范大学学报(自然科学版),2010,(06):750.
 WANG Hai feng,TANG Qin gan,XU Ling yun.Qualitative Analysis of the Delayed StageStructured PredatorPrey Systemwith Impulsive Perturbations and BD Functional Response[J].Journal of SichuanNormal University,2010,(06):750.
点击复制

带有B-D反应项和阶段结构的时滞脉冲微分方程的定性分析()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2010年06期
页码:
750
栏目:
OA
出版日期:
2010-12-08

文章信息/Info

Title:
Qualitative Analysis of the Delayed StageStructured PredatorPrey Systemwith Impulsive Perturbations and BD Functional Response
作者:
王海峰12唐清干2*徐凌云2
(1. 南京理工大学 泰州科技学院, 江苏 泰州 225300;2. 桂林电子科技大学 计算科学与应用数学系, 广西 桂林 541004)
Author(s):
WANG Haifeng12TANG Qingan2XU Lingyun2
(1. Taizhou Science and Technology College, Nanjing University of Science and Technology, Taizhou 225300, Jiangsu;2. Department of Computational Science and Applied Mathematics, Guilin University of Electronic Technology, Guilin 541004, Guangxi)
关键词:
阶段结构 时滞 脉冲 一致持久 全局吸引
Keywords:
stagestructured delayed impulsive uniform persistent global attractivity2000 MSC65L20
分类号:
O175.1
文献标志码:
A
摘要:
在带有B-D功能反应函数和时滞阶段结构的捕食-食饵系统的基础上,对捕食者引入脉冲投放,而改进了原来的系统,并且所得的系统具有较强的生物背景.通过对新的系统的研究,得到了系统的食饵灭绝周期解的全局吸引和系统持续生存的充分条件,也证明了系统解的一致完全有界.结论说明了脉冲投放捕食者,对系统的持久起了重要的作用.一定存在某个阀值p*,当脉冲投放量p大于p*时,系统周期解是全局吸引的,当p小于p*时,系统是一致持久的.这为生物资源的管理提供了策略基础.
Abstract:
Based on a stagestructured delayed predatorprey model with BD functional response, by introducing the impulsive stocking predator, we improved the system. And the mathematical model has biological meanings. Sufficient conditions of the global attractivity of preyextinction boundary periodic solution and permanence of the system are obtained. It is also proved that all solutions of the system are uniformly ultimately bounded. The results show that the behavior of impulsive stocking on predator plays an important role for the permanence of the system. There must exit a threshold p*, if p>p*, the periodic solution is globally attractive, and if p

参考文献/References:

[1]Aiello W G, Freedman H I. A time delay model of single 2 species growth with stage structure[J]. Math Biosci,1990,101:139-153.
[2]Song X, Chen L. Global asymptotic stability of a two species competitive system with stage structure and harvesting[J]. Commun Nonlinear Sci Numer Simul,2001,19:81-87.
[3]Leung A W. Optimal harvesting-coeficient contral of steady-state prey-predator difusive Volterra-Lotka system[J]. Appl Math Optim,1995,31(2):219.
[4]Song X, Chen L. Optimal harvesting and stability for a two-species competitive system with stage structure[J]. Math Biosci,2001,170:173-186.
[5]杨程,李树勇. 一类含时滞和扩散Lotka-Volterra竞争模型的持久性和吸引性[J]. 四川师范大学学报:自然科学版,2008,31(3):268-272.
[6]Cai Li-ming, Yu Jing-yuan, Zhu Guang-tian. A stage-structured predator-prey model with Beddington-DeAngelis functional response[J]. Appl Math Comput,2008,26:85-103.
[7]Tsoularis A, Wallance J. Analysis of logistic growth models[J]. Math Biosci,2002,179:21-55.
[8]Pardhan T, Chaudhuri K S. Bioeconomic modeling of a single-species fishery with Gompertz law of growth[J]. Bio Sys,1998,6:393-409.
[9]Liu Xian-ning, Chen Lan-sun. Compex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator[J]. Chaos Soliton and Fractals,2003,16(2):311-320.
[10]杨志春. 含脉冲的捕食与被捕食系统的持续生存和周期解[J]. 四川师范大学学报:自然科学版,2003,26(3):247-249.
[11]Gao Shu-jing, Chen Lan-sun. Pulse vaccination strategy in a delayed SIR epidemic model with vertical transmission[J]. Discrete and Continuous Dynamical Systemes,2007,B7(1):77-86.
[12]Lakshmikantham V, Bainov D D, Simeonov P. Theory of Impulsive Differential Equations[M]. Singapore:World Scientific,1989.
[13]Yang Kuang. Delay Differential Equation with Application in Population Dynamics[M]. New York:Academic Press,1987:67-70.
[14]Jiao J, Chen L, Cai S. An SEIRS epidemic model with two delays and pulse vaccination[J]. Syst Sci Complex,2008,28(4):385-394.
[15]Caltagironel L E, Doutt R L. Global behavior of an SEIRS epidemic model with delays, the history of the vedalia beetle importation to California and its impact on the development of biological control[J]. Ann Rev Entomol,1989,34:1-16.

相似文献/References:

[1]邵远夫,艾武.一类脉冲多时滞互惠系统周期解的存在性与稳定性[J].四川师范大学学报(自然科学版),2012,(01):33.
 SHAO Yuan fu,AI Wu.The Existence and Stability of Periodic Solution for a Multidelay Mutualism System with Impulses[J].Journal of SichuanNormal University,2012,(06):33.
[2]王五生,李自尊.一类新的非线性时滞积分不等式及其应用[J].四川师范大学学报(自然科学版),2012,(02):180.
 WANG Wu-sheng,LI Zi-zun.A New Nonlinear Retarded Integral Inequality and Its Application[J].Journal of SichuanNormal University,2012,(06):180.
[3]赵君平,于育民.一类病菌与免疫系统作用模型的定性分析[J].四川师范大学学报(自然科学版),2012,(02):202.
 ZHAO Jun-ping,YU Yu-min.Qualitative Analysis of a Model with the Action Between Immune System and Bacteria[J].Journal of SichuanNormal University,2012,(06):202.
[4]冯菊,李树勇*.一类半线性含可变时滞脉冲抛物型方程解振动的充要条件[J].四川师范大学学报(自然科学版),2010,(02):162.
 FENG Ju,LI Shu yong.Necessary and Sufficient Conditions for Oscillation for a Class of Semilinear Impulsive Parabolic Equations with Variable Delays[J].Journal of SichuanNormal University,2010,(06):162.
[5]周效良,王五生.高阶拟线性变时滞差分方程正解的存在性[J].四川师范大学学报(自然科学版),2010,(06):760.
 ZHOU Xiao liang,WANG Wu sheng.Existence of Positive Solutions of Higher Order QuasilinearDifference Equations with Variable Delay[J].Journal of SichuanNormal University,2010,(06):760.
[6]徐昌进,廖茂新.具有时滞的脉冲互惠系统的正周期解的存在性[J].四川师范大学学报(自然科学版),2011,(02):186.
 XU Changjin,LIAO Maoxin.The Existence of Positive Periodic Solutions of a Mutual and Impulsive System with Time Delay[J].Journal of SichuanNormal University,2011,(06):186.
[7]李亚男,王玉光.一类不确定系统的保性能变结构控制[J].四川师范大学学报(自然科学版),2011,(05):663.
 LI Ya nan,WANG Yu guang.Guaranteed Cost Variable Structure Control of a Class of Uncertain Systems[J].Journal of SichuanNormal University,2011,(06):663.
[8]徐昌进.具有时滞和Holling III型功能反应函数的离散捕食模型的周期解[J].四川师范大学学报(自然科学版),2013,(05):686.
 XU Changjin.Periodic Solutions of a Delayed PredatorPrey Model with Holling III Functional Response[J].Journal of SichuanNormal University,2013,(06):686.
[9]韩仲明.非线性时滞系统的K-稳定性[J].四川师范大学学报(自然科学版),2004,(03):259.
 HAN Zhong-ming (Department of Mathematics,Leshan Teachers College,Leshan 00,et al.[J].Journal of SichuanNormal University,2004,(06):259.
[10]王长有,李树勇,杨治国.含时滞的反应扩散方程周期解的存在唯一性[J].四川师范大学学报(自然科学版),2004,(04):339.
 WANG Chang-you,LI Shu-yong,YANG Zhi-guo (College of Mathematics and Software Science,et al.[J].Journal of SichuanNormal University,2004,(06):339.

备注/Memo

备注/Memo:
收稿日期:2009-01-07基金项目:广西教育厅科学基金(D2008007)资助项目*联系作者简介:唐清干(1964—),男,副教授,主要从事微分方程定性理论的研究
更新日期/Last Update: 2010-12-08