[1]徐昌进,廖茂新.具有时滞的脉冲互惠系统的正周期解的存在性[J].四川师范大学学报(自然科学版),2011,(02):186-192.
 XU Changjin,LIAO Maoxin.The Existence of Positive Periodic Solutions of a Mutual and Impulsive System with Time Delay[J].Journal of SichuanNormal University,2011,(02):186-192.
点击复制

具有时滞的脉冲互惠系统的正周期解的存在性()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2011年02期
页码:
186-192
栏目:
四川师范大学学报
出版日期:
2011-03-20

文章信息/Info

Title:
The Existence of Positive Periodic Solutions of a Mutual and Impulsive System with Time Delay
作者:
徐昌进12廖茂新23
(1. 贵州财经学院 数学与统计学院, 贵州 贵阳 550004;2. 中南大学 数学与计算科学学院, 湖南 长沙 410083; 3. 南华大学 数理学院, 湖南 衡阳 421001)
Author(s):
XU Changjin12LIAO Maoxin23
(1. School of Mathematics and Statistics, Guizhou College of Finance and Economics, Guiyang 550004, Guizhou; 2. Department of Mathematics, Central South University, Changsha 410083, Hunan; 3. School of Mathematics and Physics, Nanhua University, Hengyang
关键词:
互惠系统 脉冲 周期解 时滞 拓扑度
Keywords:
mutual system impulse periodic solution time delay topological degree2000 MSC34K13 34K45()
分类号:
O175.12
文献标志码:
A
摘要:
运用重合度理论中的连续性定理研究了一类具有周期时滞和周期系数的脉冲互惠系统的正周期解的存在性,得到了该系统至少存在一个正周期解的一个易于检验的充分条件,给出了一个具体例子来说明所得结论的可行性和正确性.所得结果在种群动力学研究领域,特别是互惠系统研究领域中具有理论和现实的应用价值,该结果是对前人研究具有时滞的互惠系统的有益补充.
Abstract:
In this paper, we study the existence of positive periodic solutions of a mutual and impulsive system with periodic time delay and periodic coefficients by using the continuation theorem of coincidence degree theory. A verifiable sufficient condition for the existence of at least one positive periodic solution of the system is obtained. An illustrative example is given to demonstrate the feasibility and effectiveness of the obtained results. The results are significant and useful in both theoretical and practical importance in population dynamics, especially in mutual system fields. Our result is a good complement to the earlier study on mutual system with time delay.

参考文献/References:

[1] Murray J D. Mathematical Biology[M]. New York:Springer-Verlag,1989.
[2] Chen L S. Mathematical Ecological Model and the Research Methods[M]. Beijing:Scientific Press,1988.
[3] Meng X Z, Wei J J. Stability and bifurcation of mutual system with time delay[J]. Chaos,Solitons and Fratcal,2001,21:729-740.
[4] Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations[M]. Berlin:Springer-Verlag,1997.
[5] Lin G J, Hong Y G. Nonlinear Analysis:Real World Applications,2009,10:1589-1600.
[6] Zhang Z Q, Tian T S. Multiple periodic solutions for a generalized predatoe prey system with exploited terms[J]. Nonlinear Analysis:Real World Applications,2008,9:26-39.
[7] Fan G H, Li Y K. Existence of positive periodic solutions for a periodic logistic equation[J]. Appl Math Comput,2003,139:311-321.
[8] Hu H X, Teng Z D, Jiang H J. On the permanence in non-autonomous Lotka-Volterra competitive system with pure-delays and feedback controls[J]. Nonlinear Analysis:Real World Applications,2009,10(3):1803-1815.
[9] Fan G H, Li Y K. Existence and stability of periodic solution of a Lotka-Volterra predator-prey model with state dependent impulsive effects[J]. J Comput Appl Math,2009,15(2):544-555.
[10] Zhang Z Q, Wang Z C. Periodic solution for a nonautonomous predator prey system with diffusion and time delay[J]. Hiroshima Mathematical Journal,2001,31:371-381.
[11] Liu Z J, Chen L S. Periodic solution of a two-species competitive system with toxicant and birth pulse[J]. Chaos,Solitons and Fratcal,2007,32:1703-1712.
[12] Jin Z, Ma Z E, Han M A. The existence of periodic solutions of the n-species Lotka-Volterra competition system with impulsive[J]. Chaos,Solitons and Fratcal,2004,22:181-188.
[13] Laksmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equaqtions[M]. Singapore:World Scientific,1989.
[14] Meng X Z, Chen L S. Periodic solution and almost periodic solution for a nonautonomous Lotka-Volterra dispersal system with infinite delay[J]. J Math Anal Appl,2008,339:125-145.
[15] Liu Z J, Tan R H, Chen L S. Global stability in a periodic delayed predator-prey system[J]. Appl Math Comput,2007,186:389-403.
[16] Ding W, Han M A. Dynamic of a non-autonomous predator-prey system with infinite delay and diffusion[J]. Comput Math Appl,2008,56:1335-1350.
[17] 任丽萍,李波. 具有Holling III型功能性捕食模型的定性分析[J]. 四川师范大学学报:自然科学版,2009,32(6):757-762.

相似文献/References:

[1]邵远夫,艾武.一类脉冲多时滞互惠系统周期解的存在性与稳定性[J].四川师范大学学报(自然科学版),2012,(01):33.
 SHAO Yuan fu,AI Wu.The Existence and Stability of Periodic Solution for a Multidelay Mutualism System with Impulses[J].Journal of SichuanNormal University,2012,(02):33.
[2]王海峰,唐清干*,徐凌云.带有B-D反应项和阶段结构的时滞脉冲微分方程的定性分析[J].四川师范大学学报(自然科学版),2010,(06):750.
 WANG Hai feng,TANG Qin gan,XU Ling yun.Qualitative Analysis of the Delayed StageStructured PredatorPrey Systemwith Impulsive Perturbations and BD Functional Response[J].Journal of SichuanNormal University,2010,(02):750.
[3]何莲花,刘安平.一阶脉冲微分方程的周期解(英)[J].四川师范大学学报(自然科学版),2013,(01):34.
 HE Lianhua,LIU Anping.Periodic Solution of Firstorder Differential Equation with Impulses[J].Journal of SichuanNormal University,2013,(02):34.
[4]赵亮,李树勇*,杜启凤,等.含时滞和脉冲的双向联想记忆神经网络模型的全局鲁棒一致渐近稳定性分析[J].四川师范大学学报(自然科学版),2013,(02):177.
 ZHAO Liang,LI Shuyong,DU Qifeng,et al.Global Robust Uniformly Asymptotic Stability Analysis of Bidirectional Associative Memory Neural Networks with Time Delays and Impulses[J].Journal of SichuanNormal University,2013,(02):177.
[5]杨雯抒.脉冲中立型双曲方程的振动性[J].四川师范大学学报(自然科学版),2004,(04):368.
 YANG Wen-shu (Department of Mathematics,Jiaying University,Meizhou 0,et al.[J].Journal of SichuanNormal University,2004,(02):368.
[6]张志红,胡满佳.一类具有脉冲的时滞微分方程的全局吸引性[J].四川师范大学学报(自然科学版),2003,(03):243.
 ZHANG Zhi hong,HU Man jia (Department of Mathematics,Yueyang Teachers College,et al.[J].Journal of SichuanNormal University,2003,(02):243.
[7]李艳青,张 龙*,刘 江.具有季节性自然演替及脉冲扰动的单种群模型[J].四川师范大学学报(自然科学版),2017,(01):84.[doi:10.3969/j.issn.1001-8395.2017.01.014]
 LI Yanqing,ZHANG Long,LIU Jiang.A Single Species Model with Seasonal Succession and Impulsive Perturbations[J].Journal of SichuanNormal University,2017,(02):84.[doi:10.3969/j.issn.1001-8395.2017.01.014]

备注/Memo

备注/Memo:
收稿日期:2009-06-04基金项目:国家自然科学基金(10771094)和湖南省教育厅基金(07C639)资助项目作者简介:徐昌进(1970—),男,博士生,主要从事泛函微分方程理论及应用研究的研究
更新日期/Last Update: 2011-02-15