[1]李亚男,王玉光.一类不确定系统的保性能变结构控制[J].四川师范大学学报(自然科学版),2011,(05):663-666.
 LI Ya nan,WANG Yu guang.Guaranteed Cost Variable Structure Control of a Class of Uncertain Systems[J].Journal of SichuanNormal University,2011,(05):663-666.
点击复制

一类不确定系统的保性能变结构控制()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2011年05期
页码:
663-666
栏目:
目次
出版日期:
2011-09-20

文章信息/Info

Title:
Guaranteed Cost Variable Structure Control of a Class of Uncertain Systems
作者:
李亚男1王玉光2
1. 河南理工大学 万方科技学院, 河南 焦作 454000;2. 宁夏大学 数学计算机学院, 宁夏 银川 750021
Author(s):
LI YananWANG Yuguang
1. Wanfang Institute of Science and Technology, Henan Polytechnic University, Jiaozuo 454000, Henan; 2. School of Mathematics and Computer Science, Ningxia University, Yinchuan 750021, Ningxia
关键词:
自适应模糊控制器 时滞 不确定性 线性矩阵不等式
Keywords:
selfadaptation fuzzy control time lag uncertainty linear matrix inequality(LMI)2000 MSC:34H05 93C15
分类号:
O175
文献标志码:
A
摘要:
针对一类不确定系统,提出了保性能变结构控制器的设计方法,首先设计了一个切换面,利用状态变换和线性矩阵不等式给出了滑动模态的存在条件和算法,使得滑动模态不仅渐近稳定而且满足给定的性能指标.其次利用模糊逻辑系统的万有逼近性能,设计了一种变结构模糊控制律,该控制律能使空间任意点出发的系统状态都在有限时间内到达切换面并渐近到达原点.最后,一个仿真例子说明了所给方法的有效性和可行性.
Abstract:
We propose a guaranteed cost variable structure design method. Firstly, a guaranteed cost sliding mode is given by the state transfer and linear matrix inequalities, which not only makes sliding mode asymptotically stable, but also satisfies a prescribed performance index. Secondly, fuzzy sliding mode control is designed to drive the system to reach and remain in sliding mode and system can asymptotically reach the equilibrium point. Finally, a simulation example is shown to illustrate the validity and feasibility of the proposed method.

参考文献/References:

[1] Hua C, Long C, Guan X, et al. Am Control Conf,2002,10:3356-3370.
[2] Shi P. Filtering on sampled-data systems with parametric uncertainty\[J\]. IEEE Trans Automat Control,1998,43:1022-1027.
[3] Mahmoud M, Shi P. Internat J Robust Nonlinear Control,2003,13:755-784.
[4] Shi P, Boukas K, Agarwal R. IEEE Trans Automat Control,1999,44:2139-2144.
[5] Kim E, Lee H. IEEE Transitions on Fuzzy Systems,2000,8:523-534.
[6] Li Y. International Journal of Systems Science,2000,31(3):367-372.
[7] Wang L, Zhan W. IEEE Trans Automat Control,1999,44:886-888.
[8] Li X. IEEE Trans Automat Control,1997,42(8):1144-1148.
[9] Yu F, Chung H, Chen S. Fuzzy Set and Systems,2003,140:359-374.
[10] Hua C, Guan X, Duan G. Fuzzy Set and Systems,2004,148:453-468.
[11] Hua C, Guan X, Shi P. Fuzzy Sets and Systems,2005,153:447-458.
[12] Kung C, Cheng T. Fuzzy Set and Systems,2005,155:292-308.
[13] 蒲志林, 徐道义. 一类互联不确定系统的鲁棒稳定性分析与干扰抑制\[J\]. 四川师范大学学报:自然科学版,2000,23(1):10-13.
[14] 朱渌涛, 蒲志林. 二次稳定性与鲁棒H∞控制\[J\]. 四川师范大学学报:自然科学版,1999,22(1):11-16.
[15] 王锋. 具有时滞的中立型非线性控制系统的镇定与控制问题\[J\]. 四川师范大学学报:自然科学版,1999,22(5):530-535.
[16] Liu L, Han Z, Li W. Global sliding mode control and application in chaotic systems\[J\]. Nonlinear Dynamics,2009,56:193-198.
[17] Liu L, Han Z, Li W. J Franklin Institute,2010,347:567-576.
[18] Nazzal J, Natsheh N. Chaos control using sliding mode theory\[J\]. Chaos, Soliton and Fractals,2007,33:695-702.
[19] Liu L, Han Z, Cai X. Mathematics and Computers in Simulation,2009,79:3018-3025.

相似文献/References:

[1]邵远夫,艾武.一类脉冲多时滞互惠系统周期解的存在性与稳定性[J].四川师范大学学报(自然科学版),2012,(01):33.
 SHAO Yuan fu,AI Wu.The Existence and Stability of Periodic Solution for a Multidelay Mutualism System with Impulses[J].Journal of SichuanNormal University,2012,(05):33.
[2]王五生,李自尊.一类新的非线性时滞积分不等式及其应用[J].四川师范大学学报(自然科学版),2012,(02):180.
 WANG Wu-sheng,LI Zi-zun.A New Nonlinear Retarded Integral Inequality and Its Application[J].Journal of SichuanNormal University,2012,(05):180.
[3]赵君平,于育民.一类病菌与免疫系统作用模型的定性分析[J].四川师范大学学报(自然科学版),2012,(02):202.
 ZHAO Jun-ping,YU Yu-min.Qualitative Analysis of a Model with the Action Between Immune System and Bacteria[J].Journal of SichuanNormal University,2012,(05):202.
[4]冯菊,李树勇*.一类半线性含可变时滞脉冲抛物型方程解振动的充要条件[J].四川师范大学学报(自然科学版),2010,(02):162.
 FENG Ju,LI Shu yong.Necessary and Sufficient Conditions for Oscillation for a Class of Semilinear Impulsive Parabolic Equations with Variable Delays[J].Journal of SichuanNormal University,2010,(05):162.
[5]王海峰,唐清干*,徐凌云.带有B-D反应项和阶段结构的时滞脉冲微分方程的定性分析[J].四川师范大学学报(自然科学版),2010,(06):750.
 WANG Hai feng,TANG Qin gan,XU Ling yun.Qualitative Analysis of the Delayed StageStructured PredatorPrey Systemwith Impulsive Perturbations and BD Functional Response[J].Journal of SichuanNormal University,2010,(05):750.
[6]周效良,王五生.高阶拟线性变时滞差分方程正解的存在性[J].四川师范大学学报(自然科学版),2010,(06):760.
 ZHOU Xiao liang,WANG Wu sheng.Existence of Positive Solutions of Higher Order QuasilinearDifference Equations with Variable Delay[J].Journal of SichuanNormal University,2010,(05):760.
[7]徐昌进,廖茂新.具有时滞的脉冲互惠系统的正周期解的存在性[J].四川师范大学学报(自然科学版),2011,(02):186.
 XU Changjin,LIAO Maoxin.The Existence of Positive Periodic Solutions of a Mutual and Impulsive System with Time Delay[J].Journal of SichuanNormal University,2011,(05):186.
[8]徐昌进.具有时滞和Holling III型功能反应函数的离散捕食模型的周期解[J].四川师范大学学报(自然科学版),2013,(05):686.
 XU Changjin.Periodic Solutions of a Delayed PredatorPrey Model with Holling III Functional Response[J].Journal of SichuanNormal University,2013,(05):686.
[9]韩仲明.非线性时滞系统的K-稳定性[J].四川师范大学学报(自然科学版),2004,(03):259.
 HAN Zhong-ming (Department of Mathematics,Leshan Teachers College,Leshan 00,et al.[J].Journal of SichuanNormal University,2004,(05):259.
[10]王长有,李树勇,杨治国.含时滞的反应扩散方程周期解的存在唯一性[J].四川师范大学学报(自然科学版),2004,(04):339.
 WANG Chang-you,LI Shu-yong,YANG Zhi-guo (College of Mathematics and Software Science,et al.[J].Journal of SichuanNormal University,2004,(05):339.

备注/Memo

备注/Memo:
收稿日期:2009-08-24基金项目:国家自然科学基金(60673187)资助项目作者简介:李亚男(1983—),男,讲师,主要从事生物数学的研究
更新日期/Last Update: 2011-05-20