[1]邵远夫,艾武.一类脉冲多时滞互惠系统周期解的存在性与稳定性[J].四川师范大学学报(自然科学版),2012,(01):33-38.
 SHAO Yuan fu,AI Wu.The Existence and Stability of Periodic Solution for a Multidelay Mutualism System with Impulses[J].Journal of SichuanNormal University,2012,(01):33-38.
点击复制

一类脉冲多时滞互惠系统周期解的存在性与稳定性()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2012年01期
页码:
33-38
栏目:
出版日期:
2012-01-11

文章信息/Info

Title:
The Existence and Stability of Periodic Solution for a Multidelay Mutualism System with Impulses
作者:
邵远夫艾武
桂林理工大学 理学院, 广西 桂林 541004
Author(s):
SHAO YuanfuAI Wu
School of Science, Guilin University of Technology, Guilin 541004, Guangxi
关键词:
连续定理 时滞 脉冲 周期解 稳定性
Keywords:
continuation theorem delay impulse periodic solution stability
分类号:
O175
文献标志码:
A
摘要:
运用迭合度理论中的连续定理和Lyapunov泛函,结合矩阵理论,讨论得到了一类脉冲多时滞互惠系统周期解存在与稳定的充分条件,该结论改进和推广了一些已有的结果.
Abstract:
By applying the continuation theorem in coincidence degree theory and Lyapunov functional, the sufficient conditions of the existence and stability of periodic solution to a multidelay mutualism system with impulses are established. The main result improves and generalizes some known results.

参考文献/References:

[1] 杨帆,蒋达清,万阿英. 多时滞Lotka-Volterra互惠系统周期正解的存在性[J]. 工程数学学报,2002,19:64-68.
[2] 陈凤德,史金麟,陈晓星. 多滞量Lotka-Volterra互惠系统的周期解[J]. 工程数学学报,2004,21:403-409.
[3] Liu Z, Tan R, Chen L. On the stable periodic solutions of a delayed two-species model of facultative mutualism[J]. Appl Math Comput,2008,196:105-117.
[4] Yan X, Li W. Physica D:Nonlinear Phenomena,2007,227:51-69.
[5] Lakshmikantham V, Bainov D, Simeonov P. Theory of Impulsive Differential Equations[M]. Singerpore:World Scientific,1989.
[6] 杨志春. Volterra型脉冲积分微分方程解的存在性和稳定性[J]. 重庆师范大学学报:自然科学版,2008,25(1):1-4.
[7] 邵远夫,李培峦. 一类脉冲延滞微分方程正周期解存在的充分条件[J]. 四川师范大学学报:自然科学版,2008,31(5):549-553.
[8] Li J, Yan J. Neurocomputing,2009,72:2303-2309.
[9] 邵远夫. 一类广义n物种脉冲竞争模型正周期解的存在性[J]. 贵州师范大学学报:自然科学版,2009,27(1):46-51.
[10] 郭大钧. 非线性泛函分析[M]. 济南:山东大学出版社,1999.
[11] Lu S, Ge W. Appl Math Comput,2003,146:195-209.
[12] Berman A, Plemmons R J. Nonnegative Matrices in the Mathematical Sciences[M]. New York:Academic Press,1979.
[13] Gopalsamy K. Stability and Oscillations in Delay Differential Equations of Population Dynamics[M]. Boston:Kluwer Academic,1992.

相似文献/References:

[1]王五生,李自尊.一类新的非线性时滞积分不等式及其应用[J].四川师范大学学报(自然科学版),2012,(02):180.
 WANG Wu-sheng,LI Zi-zun.A New Nonlinear Retarded Integral Inequality and Its Application[J].Journal of SichuanNormal University,2012,(01):180.
[2]赵君平,于育民.一类病菌与免疫系统作用模型的定性分析[J].四川师范大学学报(自然科学版),2012,(02):202.
 ZHAO Jun-ping,YU Yu-min.Qualitative Analysis of a Model with the Action Between Immune System and Bacteria[J].Journal of SichuanNormal University,2012,(01):202.
[3]冯菊,李树勇*.一类半线性含可变时滞脉冲抛物型方程解振动的充要条件[J].四川师范大学学报(自然科学版),2010,(02):162.
 FENG Ju,LI Shu yong.Necessary and Sufficient Conditions for Oscillation for a Class of Semilinear Impulsive Parabolic Equations with Variable Delays[J].Journal of SichuanNormal University,2010,(01):162.
[4]王海峰,唐清干*,徐凌云.带有B-D反应项和阶段结构的时滞脉冲微分方程的定性分析[J].四川师范大学学报(自然科学版),2010,(06):750.
 WANG Hai feng,TANG Qin gan,XU Ling yun.Qualitative Analysis of the Delayed StageStructured PredatorPrey Systemwith Impulsive Perturbations and BD Functional Response[J].Journal of SichuanNormal University,2010,(01):750.
[5]周效良,王五生.高阶拟线性变时滞差分方程正解的存在性[J].四川师范大学学报(自然科学版),2010,(06):760.
 ZHOU Xiao liang,WANG Wu sheng.Existence of Positive Solutions of Higher Order QuasilinearDifference Equations with Variable Delay[J].Journal of SichuanNormal University,2010,(01):760.
[6]徐昌进,廖茂新.具有时滞的脉冲互惠系统的正周期解的存在性[J].四川师范大学学报(自然科学版),2011,(02):186.
 XU Changjin,LIAO Maoxin.The Existence of Positive Periodic Solutions of a Mutual and Impulsive System with Time Delay[J].Journal of SichuanNormal University,2011,(01):186.
[7]李亚男,王玉光.一类不确定系统的保性能变结构控制[J].四川师范大学学报(自然科学版),2011,(05):663.
 LI Ya nan,WANG Yu guang.Guaranteed Cost Variable Structure Control of a Class of Uncertain Systems[J].Journal of SichuanNormal University,2011,(01):663.
[8]徐昌进.具有时滞和Holling III型功能反应函数的离散捕食模型的周期解[J].四川师范大学学报(自然科学版),2013,(05):686.
 XU Changjin.Periodic Solutions of a Delayed PredatorPrey Model with Holling III Functional Response[J].Journal of SichuanNormal University,2013,(01):686.
[9]韩仲明.非线性时滞系统的K-稳定性[J].四川师范大学学报(自然科学版),2004,(03):259.
 HAN Zhong-ming (Department of Mathematics,Leshan Teachers College,Leshan 00,et al.[J].Journal of SichuanNormal University,2004,(01):259.
[10]王长有,李树勇,杨治国.含时滞的反应扩散方程周期解的存在唯一性[J].四川师范大学学报(自然科学版),2004,(04):339.
 WANG Chang-you,LI Shu-yong,YANG Zhi-guo (College of Mathematics and Software Science,et al.[J].Journal of SichuanNormal University,2004,(01):339.

备注/Memo

备注/Memo:
收稿日期:2009-11-30基金项目:国家自然科学基金(11161015和11161011)资助项目作者简介:邵远夫(1972—),男,副教授,主要从事泛函微分方程与动力系统的研究
更新日期/Last Update: 2012-01-13