[1]王五生,李自尊.一类新的非线性时滞积分不等式及其应用[J].四川师范大学学报(自然科学版),2012,(02):180-183.
 WANG Wu-sheng,LI Zi-zun.A New Nonlinear Retarded Integral Inequality and Its Application[J].Journal of SichuanNormal University,2012,(02):180-183.
点击复制

一类新的非线性时滞积分不等式及其应用()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2012年02期
页码:
180-183
栏目:
出版日期:
2012-03-15

文章信息/Info

Title:
A New Nonlinear Retarded Integral Inequality and Its Application
作者:
王五生1 李自尊2
1. 河池学院 数学系, 广西 宜州 546300; 2. 百色学院 数学与计算机信息工程系, 广西 百色 533000
Author(s):
WANG Wu-sheng1 LI Zi-zun2
1. Department of Mathematics, Hechi College, Yizhou 546300, Guangxi; 2. Department of Mathematics and Computer Science, Baise College, Baise 533000, Guangxi
关键词:
积分不等式 时滞 边值问题 有界性
Keywords:
integral inequality retarded boundary value problem boundedness
分类号:
O178
文献标志码:
A
摘要:
在文献(C. J. Chen, W. S. Cheung, D. Zhao. J. Inequ. Appl.,2009,2009:258569.)的基础上研究了一类更广泛的非线性时滞积分不等式,增加了两项非线性因子.尤其是 参考文献中不等式右端的第一个积分项只含有未知函数的线性因子,而研究的不等式右端的第一个积分项包含了未知函数的非线性因子.最后,把研究不等式得到的结果用于研究微分方程解的估计.
Abstract:
In this paper, we study a new nonlinear retarded integral inequality on the basis of the literature(J. Inequ. Appl.,2009,2009:258569.). Our integral inequality adds two nonlinear factors. In particular, the first integral of the inequality in the literature only contains the linear factor of unknown function, our first integral contains the nonlinear factor of unknown function. Finally, the result is used for studying the estimation of the solutions of differential equations.

参考文献/References:

[1] Gronwall T H. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations[J]. Ann Math,1919,20:292-296.
[2] Bellman R. The stability of solutions of linear differential equations[J]. Duke Math J,1943,10:643-647.
[3] Zhang W, Deng S. Projected Gronwall-Bellman's inequality for integrable functions[J]. Math Comput Model,2001,34:394-402.
[4] Wang W S. A generalized retarded Gronwall-like inequality in two variables and applications to BVP[J]. Appl Math Comput,2007,191(1):144-154.
[5] Wang W S. Estimation on certain nonlinear discrete inequality and applications to boundary value problem[J]. Adv Difference Eqns,2009,2009:708587.
[6] Choi S K, Deng S, Koo N J, et al. Nonlinear integral inequalities of Bihari-Type without class . Math Inequ Appl,2005,8(4):643-654.
[7] Xu R, Sun Y G. On retarded integral inequalities in two independent variables and their applications[J]. Appl Math Comput,2006,182:1260-1266.
[8] Kim Y H. Gronwall, Bellman and Pachpatte type integral inequalities with applications[J]. Nonl Anal,2009,71:2641-2656.
[9] 郑克龙,胡劲松. 非线性时滞Gronwall-like不等式的推广[J]. 重庆工学院学报:自然科学版,2007,21(7):66-69.
[10] 韩玉良,俞元洪. 两个新的积分不等式及其离散类似[J]. 数学研究与评论,2007,27(4):781-786.
[11] 吴宇. 关于一类弱奇性Volterra积分不等式的注记[J]. 四川师范大学学报:自然科学版,2008,31(5):534-537.
[12] 孟东沉,孟凡伟. 一类新型具有两个独立变量的不连续函数的积分不等式[J]. 系统科学与数学,2009,29(4):440-450.
[13] 周俊. 关于一个积分不等式组的讨论[J]. 四川大学学报:自然科学版,2009,46(1):21-25.
[14] 王五生. 一个推广的二变量时滞积分不等式及其应用[J]. 系统科学与数学,2010,30(3):425-432.
[15] 王五生. 一类非连续函数积分不等式中未知函数的估计[J]. 四川师范大学学报:自然科学版,2011,34(1):43-46.
[16] Lipovan O. A retarded Gronwall-like inequality and its applications[J]. J Math Anal Appl,2000,252:389-401.
[17] Agarwal R P, Deng S, Zhang W. Generalization of a retarded Gronwall-like inequality and its applications[J]. Appl Math Comput,2005,165:599-612.
[18] Agarwal R P, Kim Y H, Sen S K. New retarded integral inequalities with applications[J]. J Inequ Appl,2008,2008:908784.
[19] Cheung W S. Some new nonlinear inequalities and applications to boundary value problems[J]. Nonl Anal,2006,64:2112-2128.
[20] Chen C J, Cheung W S, Zhao D. Gronwall-Bellman-type integral inequalities and applications to BVPs[J]. J Inequ Appl,2009,2009:258569.

相似文献/References:

[1]邵远夫,艾武.一类脉冲多时滞互惠系统周期解的存在性与稳定性[J].四川师范大学学报(自然科学版),2012,(01):33.
 SHAO Yuan fu,AI Wu.The Existence and Stability of Periodic Solution for a Multidelay Mutualism System with Impulses[J].Journal of SichuanNormal University,2012,(02):33.
[2]赵君平,于育民.一类病菌与免疫系统作用模型的定性分析[J].四川师范大学学报(自然科学版),2012,(02):202.
 ZHAO Jun-ping,YU Yu-min.Qualitative Analysis of a Model with the Action Between Immune System and Bacteria[J].Journal of SichuanNormal University,2012,(02):202.
[3]冯菊,李树勇*.一类半线性含可变时滞脉冲抛物型方程解振动的充要条件[J].四川师范大学学报(自然科学版),2010,(02):162.
 FENG Ju,LI Shu yong.Necessary and Sufficient Conditions for Oscillation for a Class of Semilinear Impulsive Parabolic Equations with Variable Delays[J].Journal of SichuanNormal University,2010,(02):162.
[4]王海峰,唐清干*,徐凌云.带有B-D反应项和阶段结构的时滞脉冲微分方程的定性分析[J].四川师范大学学报(自然科学版),2010,(06):750.
 WANG Hai feng,TANG Qin gan,XU Ling yun.Qualitative Analysis of the Delayed StageStructured PredatorPrey Systemwith Impulsive Perturbations and BD Functional Response[J].Journal of SichuanNormal University,2010,(02):750.
[5]周效良,王五生.高阶拟线性变时滞差分方程正解的存在性[J].四川师范大学学报(自然科学版),2010,(06):760.
 ZHOU Xiao liang,WANG Wu sheng.Existence of Positive Solutions of Higher Order QuasilinearDifference Equations with Variable Delay[J].Journal of SichuanNormal University,2010,(02):760.
[6]徐昌进,廖茂新.具有时滞的脉冲互惠系统的正周期解的存在性[J].四川师范大学学报(自然科学版),2011,(02):186.
 XU Changjin,LIAO Maoxin.The Existence of Positive Periodic Solutions of a Mutual and Impulsive System with Time Delay[J].Journal of SichuanNormal University,2011,(02):186.
[7]李亚男,王玉光.一类不确定系统的保性能变结构控制[J].四川师范大学学报(自然科学版),2011,(05):663.
 LI Ya nan,WANG Yu guang.Guaranteed Cost Variable Structure Control of a Class of Uncertain Systems[J].Journal of SichuanNormal University,2011,(02):663.
[8]李自尊.脉冲积分不等式未知函数的估计[J].四川师范大学学报(自然科学版),2013,(02):258.
 LI Zizun.Estimation of Unknown Function of Impulsive Integral Inequality[J].Journal of SichuanNormal University,2013,(02):258.
[9]徐昌进.具有时滞和Holling III型功能反应函数的离散捕食模型的周期解[J].四川师范大学学报(自然科学版),2013,(05):686.
 XU Changjin.Periodic Solutions of a Delayed PredatorPrey Model with Holling III Functional Response[J].Journal of SichuanNormal University,2013,(02):686.
[10]韩仲明.非线性时滞系统的K-稳定性[J].四川师范大学学报(自然科学版),2004,(03):259.
 HAN Zhong-ming (Department of Mathematics,Leshan Teachers College,Leshan 00,et al.[J].Journal of SichuanNormal University,2004,(02):259.

备注/Memo

备注/Memo:
收稿日期:2010-04-01 基金项目:国家自然科学基金(11161018)和广西自然科学基金(0991265)资助项目 作者简介:王五生(1960—),男,教授,主要从事微分方程和动力系统方面的研究
更新日期/Last Update: 2012-03-29