[1]赵君平,于育民.一类病菌与免疫系统作用模型的定性分析[J].四川师范大学学报(自然科学版),2012,(02):202-208.
 ZHAO Jun-ping,YU Yu-min.Qualitative Analysis of a Model with the Action Between Immune System and Bacteria[J].Journal of SichuanNormal University,2012,(02):202-208.
点击复制

一类病菌与免疫系统作用模型的定性分析()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2012年02期
页码:
202-208
栏目:
出版日期:
2012-03-15

文章信息/Info

Title:
Qualitative Analysis of a Model with the Action Between Immune System and Bacteria
作者:
赵君平1 于育民2
1. 西安建筑科技大学 理学院, 陕西 西安 710055; 2. 南阳理工学院 应用数学系, 河南 南阳 473004
Author(s):
ZHAO Jun-ping1 YU Yu-min2
1. School of Science, Xi'an University of Architecture and Technology, Xi'an 710055, Shaanxi; 2. Department of Mathematics, Nanyang Institute of Technology, Nanyang 473004, Henan
关键词:
传染病模型 稳定性 Hopf分歧 时滞 免疫
Keywords:
epidemic model stability Hopf bifurcation time delay immunity
分类号:
O175
文献标志码:
A
摘要:
考虑病菌的一种信息交流机理,建立了一类时滞传染病模型.分析了模型平衡点的存在性、渐近稳定性及Hopf分歧的存在性及方向.最后,运用计算机数值模拟验证所得理论结果,为传染病的控制和预防提供了理论基础和数值依据.
Abstract:
Taking into account an exchanging information mechanism of bacteria, an epidemic model with time delay is formulated. The existence and stability of positive equilibrium of the model are investigated, and the length of delay preserving the stability of the positive equilibrium is estimated. Moreover, the existence and direction of Hopf bifurcation are discussed. At last, numerical simulations are curried out to verify the theory results. The results obtained in this paper provide a theoretical and numerical basis to control and prevent the epidemic disease.

参考文献/References:

[1] Braselton J P, Waltman P. A competition model with dynamically allocatedinhibitor production[J]. Math Biosci,2001,173(2):55-84.
[2] Dockery J D, Keener J P. A mathematical model for quorum sensing in pseudomonas aeruginosa[J]. Bull Math Biol,2001,63(1):95-116.
[3] Koerber A J, et al. A mathematical model of partial-thickness burn-wound infection by pseudomonas aeruginosa: quorum sensing and the build-up to invasion[J]. Bull Math Biol,2002,64(2):239-259.
[4] Fergola P, Beretta E, Cerasuolo M. Some new results on an allelopathic competition model with quorum sensing and delayed toxicant production[J]. Nonlinear Anal:RWA,2006,7(5):1081-1095.
[5] Anguige K, King J R, Ward J P. A multi-phase mathematical model of quorum sensing in a maturing pseudomonas aeruginosa biofilm[J]. Math Biosci,2006,203(2):240-276.
[6] MacDonald N. Time Delays in Biological Models[M]. Heidelberg:Spring-Verlag,1978.
[7] Kuang Y. Delay Differential Equations with Applications in Population Dynamics[M]. New York:Academic Press,1993.
[8] Hassard B D, Kazarinoff N D, Wan Y H. Theory and Applications of Hopf Bifurcation[C]//London Mathematics Society Lecture Notes. 41. Cambridge:Cambridge University Press,1981.
[9] Xiao M, Cao J D. Stability and Hopf bifurcation in a delayed competitive web sites model[J]. Phys Lett,2006,A353:138-150.
[10] Jiang X W, Zhou X Y, Shi X Y, et al. Analysis of stability and Hopf bifurcation for a delay-differential equation model of HIV infection of CD4+ T-cells[J]. Chaos, Solitons and Fractals,2008,38:447-460.
[11] Talibi-Alaoui H, Yafia R, Aziz-Alaoui M A. Hopf bifurcation direction in a delayed hematopoietic stem cells model[J]. Arab J Math Math Sci,2007,1:35-50.
[12] Yuan S L, Li Pan. Stability and direction of Hopf bifurcations in a pair of identical tri-neuron network loops[J]. Nonlinear Dyn,2010,61:569-578.
[13] Li S W, Li S R. Hopf bifurcation in a single inertial neuron model with a discrete delay[J]. Advances in Neural Networks,2005(3496):27-41.
[14] Zhuang K J. Stability and Hopf bifurcation for a dicrete disease spreading model in complex networks[J]. Inter J Diff Eqns,2009(4):155-163.
[15] Wei J J, Michael Li Y. Hopf bifurcation analysis in a delayed Nicholson blowflies equation[J]. Nonl Anal,2005,60:1351-1367.
[16] Freedman H, Rao V S H. The trade-off between mutual interference and time lags in predator-prey systems[J]. Bull Math Biol,1983,45:991-1004.

相似文献/References:

[1]邵远夫,艾武.一类脉冲多时滞互惠系统周期解的存在性与稳定性[J].四川师范大学学报(自然科学版),2012,(01):33.
 SHAO Yuan fu,AI Wu.The Existence and Stability of Periodic Solution for a Multidelay Mutualism System with Impulses[J].Journal of SichuanNormal University,2012,(02):33.
[2]杨韧,周钰谦,李建.求解一阶线性双曲型偏微分方程组的一个差分格式[J].四川师范大学学报(自然科学版),2009,(05):614.
 YANG Ren,ZHOU Yu qian,LI Jian.A Difference Scheme Solving First Order Linear HyperbolicPartial Differential Equations[J].Journal of SichuanNormal University,2009,(02):614.
[3]马月珍,李小纲,葛永斌*.二维波动方程的高精度交替方向隐式方法[J].四川师范大学学报(自然科学版),2010,(02):179.
 MA Yue zhen,LI Xiao gang,GE Yong bin.A Highaccuracy Alternating Direction Implicit Method for Solving the Twodimensional Wave Equation[J].Journal of SichuanNormal University,2010,(02):179.
[4]胡劲松,王玉兰,郑茂波.Rosenau-Burgers方程的一个新的差分格式[J].四川师范大学学报(自然科学版),2010,(04):455.
 HU Jin song,WANG Yu lan,ZHENG Mao bo.A New Finite Difference Scheme for Rosenau-Burgers Equation[J].Journal of SichuanNormal University,2010,(02):455.
[5]袁梅,梁涛,刘爱华.一类含广义m-增生算子的广义变分包含系统解的迭代算法[J].四川师范大学学报(自然科学版),2011,(01):51.
 YUAN Mei,LIANG Tao,LIU Ai hua.Iterative Algorithms of Solution for a New System of Generalized VariationalInclusions Involving Generalized mAccretive Mappings[J].Journal of SichuanNormal University,2011,(02):51.
[6]郑茂波,胡劲松*,胡兵.正则长波方程的一个新的差分逼近[J].四川师范大学学报(自然科学版),2011,(03):305.
 ZHENG Mao bo,HU Jing song,HU Bing.A New Difference Approximation of Regularized Long Wave Equations[J].Journal of SichuanNormal University,2011,(02):305.
[7]刘军,王艳.一种求解抛物型偏微分方程的时空高阶方法[J].四川师范大学学报(自然科学版),2012,(05):595.
 LIU Jun,WANG Yan.A Kind of Spacetime High Order Numerical Methods for Parabolic Partial Differential Equations[J].Journal of SichuanNormal University,2012,(02):595.
[8]张德金,向淑文*,周永辉.有限理性下拟变分不等式问题解的稳定性[J].四川师范大学学报(自然科学版),2012,(06):730.
 ZHANG De jin,XIANG Shu wen,ZHOU Yong hui.Bounded Rationality and Stability of Solutions of QuasiVariational Inequality Problems[J].Journal of SichuanNormal University,2012,(02):730.
[9]徐昌进,陈大学.具双时滞的生理模型的分支分析[J].四川师范大学学报(自然科学版),2012,(06):759.
 XU Chang jin,CHEN Da xue.Bifurcation Analysis for a Physiological Model with Two Delays[J].Journal of SichuanNormal University,2012,(02):759.
[10]刘 娟,李医民.具有功能性反应的微分生态模型的极限环分析[J].四川师范大学学报(自然科学版),2012,(04):500.
 LIU Juan,LI Yi-min.Limit Cycle Analysis of a Differential Ecosystem with Functional Response[J].Journal of SichuanNormal University,2012,(02):500.

备注/Memo

备注/Memo:
收稿日期:2011-03-02 基金项目:陕西省自然科学基金(2009JM1002)资助项目 作者简介:赵君平(1972—),女,讲师,主要从事微分方程及其应用的研究
更新日期/Last Update: 2012-03-29