[1]杜先云,陈炜.具有可加噪声的耗散KdV型方程的随机吸引子[J].四川师范大学学报(自然科学版),2012,(05):651-655.
 DU Xian yun,CHEN Wei.Random Attractors of Dissipative KdV Type Equation with Additive Noise[J].Journal of SichuanNormal University,2012,(05):651-655.
点击复制

具有可加噪声的耗散KdV型方程的随机吸引子()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2012年05期
页码:
651-655
栏目:
目次
出版日期:
2012-09-15

文章信息/Info

Title:
Random Attractors of Dissipative KdV Type Equation with Additive Noise
作者:
杜先云1陈炜2
1. 成都信息工程学院 数学学院, 四川 成都 610225;2. 绵阳师范学院 数学与计算机学院, 四川 绵阳 621000
Author(s):
DU Xianyun1CHEN Wei2
1. College of Mathematics, Chengdu University of Information Technology, Chengdu 610225, Sichuan; 2. College of Mathematics and Computer, Mianyang Normal College, Mianyang 621000, Sichuan
关键词:
随机吸引子 耗散KdV方程 白噪声 随机动力系统 O-U过程
Keywords:
random attractors dissipative KdV equation white noise stochastic dynamical system OrnsteinUhlenbeck process2000
分类号:
O175.29
文献标志码:
A
摘要:
考虑具有可加噪声的耗散KdV型方程在一维有界区域上的渐进行为,主要目的是建立整体吸引子的存在性.首先证明解的存在性和唯一性并得到解的先验估计,然后讨论该系统的随机吸收集的存在性,最后证明整体吸引子在有界确定性集合的范围内存在.
Abstract:
In this paper, we consider the long term behavior for the dissipative KdV type equation with additive noise in onedimensional domain. The main purpose of this paper is to establish the existence of global random attractor. In this paper, the uniqueness and existence are first proved for the solution of an infinite dimensional stochatic dynamical system, and a priori estimate is obtained on the solution. The existence of a random absorbing set is then discussed for the system. Finally, the global random attractor is proved to exist within the bounded deterministic sets.

参考文献/References:

[1] 谷超豪. 孤立子及应用[M]. 杭州:浙江出版社,1990.
[2] 田立新,徐振源,刘曾荣. 耗散孤立波方程的吸引子[J]. 应用数学和力学,1994,16(6):539-547.
[3] 杜先云,戴正德. 耗散KdV型方程Cauchy问题的整体吸引子[J]. 数学物理学报,2000,20(3):289-295.
[4] 李惠,蒲志林,陈光淦. 非自治吊桥方程的一致吸引子及其维数估计[J]. 四川师范大学学报:自然科学版,2009,32(5):557-563.
[5] 李树勇,周小平. 一类脉冲偏泛函微分方程在无界区域上的吸引性和不变集[J]. 四川师范大学学报:自然科学版,2010,33(5):688-693.
[6] Temam R. Infinite-Dimensional Systems in Mechanics and Physics[M]. New York:Springer-Verlag,1988.
[7] Bouard A, Debussche A. On the stochastic korteweg-de vries equation[J]. J Funct Anal,1998,154:215-251.
[8] Bouard A, Debussche A. A stochastic nonlinear schrdinger equation with multiplicative noise[J]. Commun Math Phys,1999,205:161-181.
[9] Bouard A, Debussche A. The stochastic nonlinear schrdinger equation in H1[J]. Stochastic Anal Appl,2003,21:97-126.
[10] Da Prato G, Debussche A, Temam R. Stochastic Burgers’ equation[J]. Nonl Diff Eqns Appl,1994,1:389-402.
[11] Crauel H, Debussche A, Franco F. Random attractors[J]. J Dyn Diff Eqns,1992,9:307-341.
[12] Crauel H, Flandoli F. Attractors for random dynamical systems[J]. Prob Theo Related Fields,1994,100:365-393.
[13] Krylov N V, Rozovsikii B L. Stochastic evolution equations[J]. J Soviet Math,1979,71-147.
[14] Temam R. Infinite Dimensional Dynamical Systems in Mechanics and Physics[M]. 2ed. Berlin:Springer-Verlag,1997.
[15] Wang Y, Liu Y, Wang Z. Random attractors for the partly dissipative stochastic lattice dynamical system[J]. J Diff Eqns,2008,8:799-817.

备注/Memo

备注/Memo:
收稿日期:2010-12-23基金项目:四川省教育厅重点科研基金(11ZA112)资助项目作者简介:杜先云(1964—),男,教授,主要从事无穷维动力系统的研究
更新日期/Last Update: 2012-09-15