[1]鲍杰,舒级.高阶广义2D Ginzburg-Landau方程的随机吸引子[J].四川师范大学学报(自然科学版),2014,(03):298.
 BAO Jie,SHU Ji.Random Attractor for the Generalized 2D StochasticHigherOrder GinzburgLandau Equation[J].Journal of SichuanNormal University,2014,(03):298.
点击复制

高阶广义2D Ginzburg-Landau方程的随机吸引子()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2014年03期
页码:
298
栏目:
基础理论
出版日期:
2014-05-15

文章信息/Info

Title:
Random Attractor for the Generalized 2D StochasticHigherOrder GinzburgLandau Equation
作者:
鲍杰1舒级12
1. 四川师范大学 数学与软件科学学院, 四川 成都 610066;
2. 四川师范大学 可视化计算与虚拟现实重点实验室, 四川 成都 610066
Author(s):
BAO Jie1SHU Ji12
1. College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan;
2. Visual Computing and Virtual Reality Key Laboratory of Sichuan Province, Sichuan Normal University, Chengdu 610066, Sichuan
关键词:
广义Ginzburg-Landau方程 随机动力系统 随机吸引子 加性白噪声
Keywords:
generalized GinzburgLandau equation random dynamical systems random attractor additive white noise2010 MSC:35B41 35K05
分类号:
O177.92
文献标志码:
A
摘要:
讨论了具有高阶非线性项的随机广义Ginzburg-Landau方程在H10的渐近性质.根据Crauel和Flandoli的方法,将随机微分方程转化为随机动力系统处理,并对该方程的解使用先验估计.由此证明了该方程在H10中随机吸引子的存在性.
Abstract:
In this paper we study the asymptotic dynamic for higherorder generalized GinzburgLandau equation with additive noise defined on H10. We transform the equation into the random dynamical system associated with it by the method established by Crauel and Flandoli. The existence of the random attractor of the random system is obtained by a priori estimates for the solution of the equation.

参考文献/References:

[1]rand,eissler.nteractionfocalizedolutionsorubcriticalifurcations[J].hysevett,1989,63:2801-2804.
[2]柏灵,高洪俊.义Ginzburg-Landau方程的有限维行为[J].然科学进展,1994,4(4):423-434.
[3]uan,olme,iti.lobalxistenceheoryoreneralizedinzburg-Landauquation[J].onlinearity,1992,5:1303-1314.
[4]uo,ang.initeimensionalehaviororheerivativeinzburg-Landauquationnwopatialimensions[J].hysica,1995,D89(1):83-99.
[5]uo,ang,i.hettractorfhetochasticeneralizedinzburg-Landauquation[J].cihina:Math,2008,A51:955-964.
[6]i,uo.symptoticehaviorfheDeneralizedtochasticinzburg-Landauquationithdditiveoise[J].pplathech,2009,30(8):883-894.
[7]i,ai,iu.ongimeehaviouroreneralizedomplexinzburg-Landauquation[J].athnalppl,2007,330:934-948.
[8]ang,uo,i.hesymptoticehaviorfhetochasticinzburg-Landauquationithdditiveoise[J].pplathomput,2008,198:849-857.
[9]蕊,李扬荣.有可乘白噪音的广义Ginzburg-Landau方程的随机吸引子[J].南大学学报:自然科学版,2012,34(2):92-95.
[10]颖,李扬荣.界域上带有可加白噪音的Ginzburg-Landau方程的随机吸引子[J].南大学学报:自然科学版,2012,37(12):37-42.
[11]hao,hou.imitehaviorflobalttractorsorheomplexinzburg-Landauquationnnfiniteattices[J].pplathett,2008,21:628-635.
[12]emam.nfinite-Dimensionalystemsnechanicsndhysics[M].ework:Springer-Verlag,1988.
[13]rauel,laudoli.ttractorsorandomynamicalystems[J].robabilityheoryndelatedields,1994,100:365-393.
[14]rauel,ebussche,ranco.andomttractors[J].yniffqns,1997,9(2):307-341.
[15]rnold.andomynamicalystems[M].erlin:Springer-Verlag,1998.
[16]ebussche.ausdorffimensionfandomnvariantet[J].athureppl,1998,77:967-988.
[17]iu.onvergencefpectralethodortochasticinzburg-Landauquationypace-timehiteoise[J].ommunathci,2003,1(2):361-375.
[18]hang.andomttractorsorinzburg-Landauquatonithdditiveoise[J].haosolitonract,2009,39:463-472.
[19]先云,陈炜.有可加噪声的耗散KdV型方程的随机吸引子[J].川师范大学学报:自然科学版,2012,35(5):651-655.
[20]hao,hou.andomttractorortochasticeaction-diffusionquationithultiplicativeoisennboundedomains[J].athnalppl,2011,384:160-172.
[21]ates,u,ang.andomttractorsortochasticeaction-diffusionquationsnnboundedomains[J].iffqns,2009,246:845-869.
[22]un,hong.ttractorsorheemilineareaction-diffusionquationithistributionerivativesnnboundedomains[J].onlinearnal,2005,63(1):49-65.
[23]ang,i,u.andomttrcatorsorecond-ordertochasticatticynamicalystems[J].onlinearnal,2010,72(1):483-393.
[24]uang.heandomttractorftochasticitzHugh-Nagumoquationsnnnfiniteatticeithhiteoises[J].hysica:Nonlinearhenomena,2007,233(2):83-94.
[25]光淦.类带动力边值的随机抛物型偏微分方程的不变叶理[J].川师范大学学报:自然科学版,2012,35(1):137-142.
[26]hen,uan,hang.eometrichapefnvariantanifoldsorlassftochasticartialifferentialquations[J].athhys,2011,52(7):07270201-07270214.
[27]rauel.lobalandomttractorsreniquelyeterminedyttractingeterministicompactet[J].nnathureppl,1999,176:57-72.
[28]arato,abczyk.tochasticquationsnnfiniteimensions[M].ambridge:Cambridgeniversityress,1992.

相似文献/References:

[1]杜先云,陈炜.具有可加噪声的耗散KdV型方程的随机吸引子[J].四川师范大学学报(自然科学版),2012,(05):651.
 DU Xian yun,CHEN Wei.Random Attractors of Dissipative KdV Type Equation with Additive Noise[J].Journal of SichuanNormal University,2012,(03):651.
[2]张元元,陈光淦*.带Robin边界条件的2维随机Ginzburg-Landau方程的吸引子[J].四川师范大学学报(自然科学版),2015,(01):20.
 ZHANG Yuanyuan,CHEN Guanggan.Random Attractor for the 2-Dimensional Stochastic Ginzburg-Landau Equation with Robin Boundary Data[J].Journal of SichuanNormal University,2015,(03):20.
[3]詹勇,何平,周吉.关于随机动力系统的Julia集[J].四川师范大学学报(自然科学版),1999,(02):32.
 Zhan Yong ) He Ping ) Zhou Ji ) ( ) Mianyang Commercial College,Mianyang 000,Sichuan,et al.[J].Journal of SichuanNormal University,1999,(03):32.
[4]杨 袁,舒 级*,王云肖,等.带乘性噪声的广义2D Ginzburg-Landau方程的渐近行为[J].四川师范大学学报(自然科学版),2017,(02):143.[doi:10.3969/j.issn.1001-8395.2017.02.001]
 YANG Yuan,SHU Ji,WANG Yunxiao,et al.The Asymptotic Behavior of the Generalized 2D Ginzburg-Landau Equation with Multiplicative Noise[J].Journal of SichuanNormal University,2017,(03):143.[doi:10.3969/j.issn.1001-8395.2017.02.001]
[5]王云肖,舒 级*,杨 袁,等.带加性噪声的分数阶随机Ginzburg-Landau方程的渐近行为[J].四川师范大学学报(自然科学版),2017,(02):149.[doi:10.3969/j.issn.1001-8395.2017.02.002]
 WANG Yunxiao,SHU JI,YANG Yuan,et al.Asymptotic Behavior of the 2D Generalized Fractional Stochastic Ginzburg-Landau Equation with Additive Noise[J].Journal of SichuanNormal University,2017,(03):149.[doi:10.3969/j.issn.1001-8395.2017.02.002]
[6]王云肖,舒 级*,杨 袁,等.带乘性噪声的随机分数阶Ginzburg-Landau方程的渐近行为[J].四川师范大学学报(自然科学版),2018,(05):591.[doi:10.3969/j.issn.1001-8395.2018.05.004]
 WANG Yunxiao,SHU JI,YANG Yuan,et al.Asymptotic Behavior of the Stochastic Fractional Ginzburg-Landau Equation with Multiplicative Noise[J].Journal of SichuanNormal University,2018,(03):591.[doi:10.3969/j.issn.1001-8395.2018.05.004]
[7]文慧霞,舒 级*,李林芳.一类非自治随机波动方程的随机吸引子[J].四川师范大学学报(自然科学版),2019,42(02):168.[doi:10.3969/j.issn.1001-8395.2019.02.004]
 WEN Huixia,SHU Ji,LI Linfang.The Random Attractors of a Class of Non-autonomous Stochastic Wave Equations[J].Journal of SichuanNormal University,2019,42(03):168.[doi:10.3969/j.issn.1001-8395.2019.02.004]
[8]王云肖,舒 级*,杨 袁,等.加权空间中带乘性噪声的随机分数阶非自治Ginzburg-Landau方程[J].四川师范大学学报(自然科学版),2019,42(04):491.[doi:10.3969/j.issn.1001-8395.2019.04.009]
 WANG Yunxiao,SHU Ji,YANG Yuan,et al.Stochastic Fractional Non-autonomous Ginzburg-Landau Equations with Multiplicative Noise in Weighted Space[J].Journal of SichuanNormal University,2019,42(03):491.[doi:10.3969/j.issn.1001-8395.2019.04.009]
[9]李 琴,陈光淦*,杨 敏.关于乘性噪声驱动的随机动力系统的中心流形的逼近[J].四川师范大学学报(自然科学版),2019,42(42卷):758.[doi:10.3969/j.issn.1001-8395.2019.06.007]
 LI Qin,CHEN Guanggan,YANG Min.Approximation of Centre Manifolds for Multiplicative Noise Driven Stochastic Dynamical Systems[J].Journal of SichuanNormal University,2019,42(03):758.[doi:10.3969/j.issn.1001-8395.2019.06.007]
[10]张 佳,舒 级*,董 建,等.具乘性噪声的广义Ginzburg-Landau方程的随机吸引子[J].四川师范大学学报(自然科学版),2015,(05):638.[doi:10.3969/j.issn.1001-8395.2015.05.002]
 ZHANG Jia,SHU Ji,DONG Jian,et al.Random Attractor of Generalized Ginzburg-Landau Equation with Multiplicative Noise[J].Journal of SichuanNormal University,2015,(03):638.[doi:10.3969/j.issn.1001-8395.2015.05.002]

备注/Memo

备注/Memo:
收稿日期:2013-03-21
基金项目:国家自然科学基金(10926034)和四川省教育厅自然科学重点科研基金(11ZA101)资助项目*通信
作者简介:舒级(1977—),男,副教授,主要从事随机微分方程的研究,E-mail:shuji2008@hotmail.com
更新日期/Last Update: 1900-01-01