[1]于雪梅,王晓梅*,钟守铭.带有两个加性时变时滞系统的稳定性分析[J].四川师范大学学报(自然科学版),2017,(04):427-434.[doi:10.3969/j.issn.1001-8395.2017.04.001 ]
 YU Xuemei,WANG Xiaomei,ZHONG Shouming.Stability Analysis for Systems with Two Additive Time-varying Delays[J].Journal of SichuanNormal University,2017,(04):427-434.[doi:10.3969/j.issn.1001-8395.2017.04.001 ]
点击复制

带有两个加性时变时滞系统的稳定性分析()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2017年04期
页码:
427-434
栏目:
基础理论
出版日期:
2017-04-30

文章信息/Info

Title:
Stability Analysis for Systems with Two Additive Time-varying Delays
文章编号:
1001-8395(2017)04-0427-08
作者:
于雪梅 王晓梅* 钟守铭
电子科技大学 数学科学学院, 四川 成都 611731
Author(s):
YU Xuemei WANG Xiaomei ZHONG Shouming
College of Mathematics Science, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan
关键词:
时滞系统 时滞依赖 Lyapunov函数 Lyapunov稳定性理论
Keywords:
delay system delay-dependent Lyapunov function Lyapunov stability theory
分类号:
O231
DOI:
10.3969/j.issn.1001-8395.2017.04.001
文献标志码:
A
摘要:
研究带有2个加性时变时滞系统的稳定性问题.首先,研究系统的时滞依赖稳定,并将整个时滞区间分成若干个小区间,在此条件下构造合适的Lyapunov函数.其次,根据Lyapunov稳定性理论,结合不等式技巧得到系统渐近稳定的充分条件,推广了现有文献的相关内容,并且用一系列线性矩阵不等式表示这些结论.最后,用一个数据例子证实了该研究方法的有效性.
Abstract:
The problem of delay-dependent stability for systems with two additive time-varying delay is investigated. Firstly, the delay-dependent stability is studied and the whole delay interval is divided into subintervals. Based on the above condition, a novel type of Lyapunov function is presented. Secondly, a sufficient condition for asymptotic stability of the system is obtained by using Lyapunov stability theory and inequality technique. The relevant contents of the existing literature are generalized. And this criterion is given as a set of linear matrix inequalities. Finally, a numerical example is given to support the effectiveness of the proposed method.

参考文献/References:

[1] RAMAKRISHNAN K, RAY G. Stability criteria with less LMI variables for linear system with additive time-delays[J]. J Appl Math Comput,2011,36(1/2):263-274.
[2] PENG C, YANG T C. Event-triggered communication and H control co-design for networked control systems[J]. Automatica,2013,49(5):1326-1332.
[3] 裴冀南. 具有时滞的线性系统的渐近稳定[J]. 四川师范大学学报(自然科学版),2001,24(2):151-153.
[4] DEY R, RAY G, GHOSH S, et al. Stability analysis for continuous system with additive time-varying delays:a less conservative result[J]. Appl Math Comput,2010,215(10):3740-3745.
[5] FRIDMAN E, SHAKED U. Delay-dependent stability and H control:constant and time-varying delays[J]. Inter J Control,2003,76(1):48-60.
[6] LI X, DE SOUZA C E. Delay-dependent robust stability and stabilization of uncertain linear delay system:a linear matrix inequality approach[J]. IEEE Trans Automatic Control,1997,42(8):1144-1148.
[7] SHAO K Y, ZHANG H Z, ZHAO W C, et al. Delay-dependent robust stabilization of uncertain state-delayed systems[J]. Inter J Control,2004,74(14):1447-1455.
[8] ZHANG C K, HE Y, JIANG L, et al. Delay-dependent stability criteria for generalized neural networks with two delay components[J]. IEEE Trans Neural Networks Learning Systems,2014,25(7):1263-1276.
[9] SHAO H. Improved delay-dependent stability criteria for systems with a delay varying in a range[J]. Automatica,2008,44(12):3215-3218.
[10] SHAO H Y, ZHANG Z Q, ZHU X L, et al. H control for a networked control model of systems with two additive time-varying delays[J]. Abst Appl Anal,2014,2014(349):2618-2623.
[11] LIU P L. Further results on delay-range-dependent stability with additive time-varying delay systems[J]. Isa Transactions,2014,53(2):258-266.
[12] GAO H, CHEN T, LAM J. A new delay system approach to network-based control[J]. Automatica,2008,44(1):39-52.
[13] LAM J, GAO H J, WANG C H. Stability analysis for continuous systems with two additive time-varying delay components[J]. Syst Control Lett,2007,56(1):16-24.
[14] GU K. An integral inequality in the stability problem of time-delay systems[C]//Proc 39th IEEE Conf Decision and Control. New York:IEEE,2000:2805-2810.
[15] WU M, HE Y, SHE J H, et al. Delay-dependent criteria for robust stability of time-varying delay systems[J]. Automatica,2004,40(8):1435-1439.
[16] JING X J, TAN D L, WANG Y C. An LMI approach to stability of systems with severe time-delay[J]. IEEE Trans Automatic Control,2004,49(7):1192-1195.
[17] LEE Y S, MOON Y S, KWON W H. Delay-dependent robust H control for uncertain systems with time-varying state-delay[C]//Proc 40th SICE Ann Conf. New York:IEEE,2001:198-203.

相似文献/References:

[1]黎明.具有参数扰动时滞系统的鲁棒稳定化[J].四川师范大学学报(自然科学版),1997,(03):0.
 Li Ming (Qujing Teachers College,Qujing 000,Yunnan).[J].Journal of SichuanNormal University,1997,(04):0.

备注/Memo

备注/Memo:
收稿日期:2016-01-21
基金项目:国家自然科学基金(61273015)、安徽省高校自然科学基金重点项目(KJ2016A555和KJ2016A625)和安徽省中青年优秀人才基 金(GXYQ2017158)
*通信作者简介:王晓梅(1969—),女,副教授,主要从事混合动力系统及其控制、神经网络、生物模型等的研究,E-mail:xmwang16@126.com
更新日期/Last Update: 2017-04-30