[1]张 莉,王彦朝,宋卫平.非定常Navier-Stokes方程的一种非协调有限元投影稳定化方法[J].四川师范大学学报(自然科学版),2017,(04):435-441.[doi:10.3969/j.issn.1001-8395.2017.04.002 ]
 ZHANG Li,WANG Yanzhao,SONG Weiping.A Stabilized Nonconforming Finite Element Method Based on L2 Projection for the Non-stationary Navier-Stokes Equations[J].Journal of SichuanNormal University,2017,(04):435-441.[doi:10.3969/j.issn.1001-8395.2017.04.002 ]
点击复制

非定常Navier-Stokes方程的一种非协调有限元投影稳定化方法()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2017年04期
页码:
435-441
栏目:
基础理论
出版日期:
2017-04-30

文章信息/Info

Title:
A Stabilized Nonconforming Finite Element Method Based on L2 Projection for the Non-stationary Navier-Stokes Equations
文章编号:
1001-8395(2017)04-0435-07
作者:
张 莉1 王彦朝1 宋卫平2
1. 四川师范大学 数学与软件科学学院, 四川 成都 610066;
2. 四川中电启明星信息技术有限公司, 四川 成都 610041
Author(s):
ZHANG Li1 WANG Yanzhao1 SONG Weiping2
1. College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan;
2. Aostar Information Technologies Co. Ltd, Chengdu 610041, Sichuan
关键词:
Navier-Stokes方程 L2投影 高雷诺数 外推公式
Keywords:
Navier-Stokes equations L2 projection high Reynolds number extrapolation formula 2010 MSC:49J20 49K20 65M12 65M60
分类号:
O241.82
DOI:
10.3969/j.issn.1001-8395.2017.04.002
文献标志码:
A
摘要:
基于标准的L2投影算子,对非定常Navier-Stokes方程提出了一种非协调有限元投影稳定化方法.这种非协调有限元方法的速度/压力空间采用非协调有限元NCP1-P1.该方法不仅绕开了inf-sup条件对等阶元的束缚,也克服了高雷诺数下对流占优引起的振荡.同时,结合外推公式,将非线性问题转化为线性格式进行处理,从而减少了计算量.最后给出了详细的稳定性分析和误差分析.
Abstract:
In this paper, we propose a new stabilized nonconforming finite element method based on L2 projection for the Navier-Stokes equations with high Reynolds number. This nonconforming method use the lowest equal-order pair of mixed finite elements(i.e., NCP1-P1). The scheme not only avoids the requirement caused by the inf-sup condition but also overcomes the convection domination caused by the high Reynolds number. We transform the nonlinear problem into a linear problem using the Extrapolation formula to simplify the computation. The stability and error analysis of this method are given in detail.

参考文献/References:

[1] GIRAULT V, RAVIART P A. Finite element approximation of the Navier-Stokes equations[C]//Lecture Notes in Math,749. Berlin:Springer-Verlag,1974.
[2] BREZZI F, FORTIN M. Mixed and Hybrid Finite Element Methods[M]. Berlin:Springer-Verlag,1991.
[3] ZHOU T, FENG M. A least squares Petrov-Galerkin finite element method for the stationary Navier-Stokes equations[J]. Math Comput,1993,60(202):531-543.
[4] DOUGLAS J, WANG J. An absolutely stabilized finite element method for the Stokes problem[J]. Math Comput,1989,52(186):495-508.
[5] BECKER R, BRAACK M. A finite element pressure gradient stabilization for the Stokes equations based on local projections[J]. Calcolo,2001,38(4):173-99.
[6] CODINA R. Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales[J]. Appl Numer Math,2008,58(3):264-283.
[7] BURMAN E. Pressure projection stabilizations for Galerkin approximations of Stokes' and Darcy's problem[J]. Numer Meth PDE,2008,24(1):127-143.
[8] FENG M, BAI Y, HE Y, et al. A new stabilized subgrid eddy viscosity method based on pressure projection and extrapolated trapezoidal rule for the transient Navier-Stokes equations[J]. J Comput Math,2011,29(4):415-440.
[9] QIN Y, FENG M, LUO K, et al. Local projection stabilized finite element method for Navier-Stokes equations[J]. Appl Math Mech,2010,31(5):651-664.
[10] 覃燕梅,冯民富,尹蕾. Navier-Stokes方程的一种等阶稳定化亏量校正有限元法[J]. 计算数学,2010,32(1):1-14.
[11] BOCHEV P B, DOHRMAN C R, GUNZBURGER M D. Stabilization of low-order mixed finite elements for the stokes equations[J]. SIAM J Numer Anal,2006,44(1):82-101.
[12] LI J, HE Y. A stabilized finite element method based on two local Gauss integrations for the Stokes equations[J]. J Comput Appl Math,2008,214:58-65.
[13] DOHRMAN C R, BOCHEV P B. A stabilized finite element method for the stokes problem based on polynomial pressure projections[J]. Inter J Numer Meth Fluids,2004,46(2):183-201.
[14] LI J, HE Y, CHEN Z. A new stabilized finite element method for the transient Navier-Stokes equations[J]. Comput Meth Appl Mech Engine,2007,197(1/2/3/4):22-35.
[15] HE Y, LI J. A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations[J]. Appl Numer Math,2008,58(10):1503-1514.
[16] 覃燕梅,冯民富,周天孝. 瞬态Navier-Stokes方程的一种新的全离散粘性稳定化方法[J]. 应用数学与力学,2009,30(7):783-798.
[17] LI J, CHEN Z. A new local stabilized nonconforming finite element method for the Stokes equations[J]. Computing,2008,82(2/3):157-170.
[18] JING F, SU J, ZHANG X, et al. Characteristic stabilized nonconforming finite Element method for the unsteady incompressible Navier-Stokes equations[J]. Chin J Engine Math,2014,315:764-778.

备注/Memo

备注/Memo:
收稿日期:2016-10-20
基金项目:国家自然科学基金(11571245和11371267)、973项目子课题(2011CB301800)和四川省教育厅自然科学研究一般项目(11ZB083和 15ZA0031)
第一作者简介:张 莉(1982—),女,讲师,主要从事计算数学的研究,E-mail:lizhang_hit@163.com
更新日期/Last Update: 2017-04-30