[1]王虎生,孙海霞,杨 晗*.一类二维强耦合波动方程组经典解的生命跨度的下界研究[J].四川师范大学学报(自然科学版),2017,(04):442-449.[doi:10.3969/j.issn.1001-8395.2017.04.003 ]
 WANG Husheng,SUN Haixia,YANG Han.The Lower Bounds of the Life Span for the Classical Solutionsfor a System of the Strong Coupled Wave Equations in Two Space Dimension[J].Journal of SichuanNormal University,2017,(04):442-449.[doi:10.3969/j.issn.1001-8395.2017.04.003 ]
点击复制

一类二维强耦合波动方程组经典解的生命跨度的下界研究()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2017年04期
页码:
442-449
栏目:
基础理论
出版日期:
2017-04-30

文章信息/Info

Title:
The Lower Bounds of the Life Span for the Classical Solutionsfor a System of the Strong Coupled Wave Equations in Two Space Dimension
文章编号:
1001-8395(2017)04-0442-08
作者:
王虎生 孙海霞 杨 晗*
西南交通大学 数学学院, 四川 成都 611756
Author(s):
WANG Husheng SUN Haixia YANG Han
School of Mathematics, Southwest Jiaotong Univesity, Chengdu 611756, Sichuan
关键词:
强耦合系统 波动方程 经典解 生命跨度下界
Keywords:
strong coupled system wave equations classical solution lower bounds of the life span
分类号:
O175.6
DOI:
10.3969/j.issn.1001-8395.2017.04.003
文献标志码:
A
摘要:
考虑二维强耦合波动方程组的柯西问题,在初值较小且具有紧支集的前提下,通过半群的方法,得到方程组经典解的生命跨度下界估计,改进了前人已有的结果.
Abstract:
In this paper, we consider the Cauchy problem for a system of strong coupled wave equations. Under the assumption of small initial data with compact supportset, using the semigroup method we study the lower bounds of the life span of the solutions and promote the relative known results.

参考文献/References:

[1] GLASSEY R. Finite-time blow-up for solutions of nonlinear wave equations[J]. Math Z,1981,177(3):323-340.
[2] GLASSEY R. Existence in the large for u=F(u) in two dimensions[J]. Math Z,1981,178(2):233-261.
[3] JOHN F. Blow-up of solutions of nonlinear wave equations in three space dimensions[J]. Manuscripta Math,1979,28(1):235-265.
[4] SIDERIS T. Nonexistence of global solutions to semilinear wave equations in high dimen sions[J]. Commum Partial Differ Equations,1984,52(3):378-406.
[5] ZHOU Y. Cauchy problem for semilinear wave equations with small data in four space dimensions[J]. J Differ Equations,1995,34(8):135-144.
[6] LINDBLAD H, SOGGE C D. Long-time existence for small amplitude semilinear wave equations[J]. Am J Math,1997,118(5):1047-1135.
[7] GEORGIEV V, LINDBLAD H, SOGGE C D. Weighted Strichartz estimate and global existence for semilinear wave equations[J]. Am J Math,1997,119(6):1291-1319.
[8] KUBO H, OHTA M. On the Global Behavior of Classical Solutions to Coupled Systems of Semilinear Wave Equations, “New Trend in the Theory of Hyperbolic Equations”[M]. Birkhause:Advances in Partial Differential Equations,2005:120-133.
[9] SANTO D, GEORGIEV V, MITIDIERI E. Global existence of the solutions and formation of sing-Ularities for a class of hyperbolic system[J]. Progess in Nonl Differ Eqns Appl,1997,32:117-140.
[10] FLAVIANO M D. Lower bounds of the life span of classical solutions to a system of semilinear wave equations in two space dimension[J]. J Math Anal Appl,2003,281(1):22-45.
[11] KUBO H, OHTA M. blow-up for systems of semilinear wave equations in two space dimension[J]. Hokkaido Math J,2006,2006(35):699-717.
[12] ZHOU Y. Life span of classical solution to utt-uxx=|u|1[J]. Chin Ann Math,1992,B13(2):230-243.
[13] KUBO H, OSAKA A, YAZICI M. Global existence and blow-up for wave equations with weighted nonlinear terms in one space dimension[J]. Interdisciplinary Information Sciences,2013,19(2):143-148.
[14] WAKASA K. The life span of solutions to wave equations with weighted nonlinear terms in one space dimension[J]. Analysis PDES,2014:arXiv:1409.5877v1.
[15] ZHOU Y. Life span of classical to u=|u|pin two space dimension[J]. Chin Ann Math,1993,B14(2):225-236.

相似文献/References:

[1]韩亦文.整体单极Anti-de-Sitter黑洞的Hawking辐射[J].四川师范大学学报(自然科学版),2003,(01):59.
 HAN Yi wen(. Department of Physics,Daxian Teachers College,Dazhou 000,et al.[J].Journal of SichuanNormal University,2003,(04):59.
[2]侯慎勇.非线性边界条件的波动方程的初边值问题[J].四川师范大学学报(自然科学版),2002,(04):370.
 HOU Sheng yong (Department of Mathematics,Fuling Normal College,Fuling 08000,et al.[J].Journal of SichuanNormal University,2002,(04):370.
[3]程正琼.高阶摄动波动方程的L~p-L~(p′)估计[J].四川师范大学学报(自然科学版),1999,(01):50.
 Cheng Zhengqiong (Basic Department,Sichuan Agricuture University,Yaan 0,et al.[J].Journal of SichuanNormal University,1999,(04):50.
[4]李木华.一类半线性波动方程的低正则性估计[J].四川师范大学学报(自然科学版),2000,(03):236.
 LI Mu hua (Department of Mathematics,Leshan Teachers College,Leshan 000,et al.[J].Journal of SichuanNormal University,2000,(04):236.
[5]陈波涛.高维空间中半线性波动方程的Sobolev指数[J].四川师范大学学报(自然科学版),2000,(04):346.
 CHEN Bo tao (Department of Mathematics,Fuling Teachers College,Fuling 08000,et al.[J].Journal of SichuanNormal University,2000,(04):346.
[6]甘在会,赖绍永.三维空间中一类非线性波动方程整体解的存在性[J].四川师范大学学报(自然科学版),2001,(03):230.
 GAN Zai hui,LAI Shao yong (Department of Mathematics,Sichuan Normal University,et al.[J].Journal of SichuanNormal University,2001,(04):230.
[7]黄文毅,钟越,刘诗涣,等.对偶Kirchhoff型波动方程的一致衰减解[J].四川师范大学学报(自然科学版),2007,(03):253.
 HUANG Wen-yi,ZHONG Yue,LIU Shi-huan,et al.[J].Journal of SichuanNormal University,2007,(04):253.
[8]尹正,邓汝良,王新华.R~n(n≥4)维空间中方程□u=|u|~2的Sobolev指数[J].四川师范大学学报(自然科学版),2007,(04):426.
 YIN Zheng,DENG Ru-liang,WANG Xin-hua(College of Economic Mathematics,et al.[J].Journal of SichuanNormal University,2007,(04):426.
[9]程正琼.带有紧支集位势的波动方程解的L~p估计[J].四川师范大学学报(自然科学版),1997,(05):0.
 Cheng Zengqiong (Public Deparment,Sichuan Agricuture University,Yaan 0,et al.[J].Journal of SichuanNormal University,1997,(04):0.
[10]肖希.振动波场量子化及其物理意义[J].四川师范大学学报(自然科学版),1993,(02):0.
 Xiao Xi (Yibin Teachers College,Yibing 007,Sichuan).[J].Journal of SichuanNormal University,1993,(04):0.

备注/Memo

备注/Memo:
收稿日期:2016-08-25
基金项目:国家自然科学基金(71572156)
*通信作者简介:杨 晗(1969—),男,教授,主要从事偏微分方程的研究,E-mail: hanyang 95@263.net
更新日期/Last Update: 2017-04-30