[1]李海艳,王 敏,李利玫.脉冲微分方程m-点边值问题的多重正解[J].四川师范大学学报(自然科学版),2017,(04):457-463.[doi:10.3969/j.issn.1001-8395.2017.04.005 ]
 LI Haiyan,WANG Min,LI Limei.Multiple Positive Solutions to m-point Boundary Value Problem for a Class of Impulsive Differential Equations[J].Journal of SichuanNormal University,2017,(04):457-463.[doi:10.3969/j.issn.1001-8395.2017.04.005 ]
点击复制

脉冲微分方程m-点边值问题的多重正解()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2017年04期
页码:
457-463
栏目:
基础理论
出版日期:
2017-04-30

文章信息/Info

Title:
Multiple Positive Solutions to m-point Boundary Value Problem for a Class of Impulsive Differential Equations
文章编号:
1001-8395(2017)04-0457-07
作者:
李海艳1 王 敏2 李利玫3
1. 四川大学 锦城学院, 四川 成都 611731;
2. 成都工业学院 人事处, 四川 成都 611730;
3. 四川师范大学 数学与软件科学学院, 四川 成都 610066
Author(s):
LI Haiyan1 WANG Min2 LI Limei3
1. Jincheng College, Sichuan University, Chengdu 611731, Sichuan;
2. Department of Personnel, College of Chengdu Technological, Chengdu 611730, Sichuan;
3. College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan
关键词:
不动点指数定理 脉冲微分方程 m-点边值问题 全连续 正解
Keywords:
fixed point index theory impulsive differential equation m-point boundary value condition completely continuous positive solutions
分类号:
O175.8
DOI:
10.3969/j.issn.1001-8395.2017.04.005
文献标志码:
A
摘要:
利用锥上的不动点指数定理研究一类脉冲微分方程的多点边值问题,获得了该问题多重正解的存在性新结果.
Abstract:
Using the fixed point index theory, in this paper, we study the m-point value problem for a class of impulsive differential equation. A new result for the existence of multiple positive solutions is given.

参考文献/References:

[1] NENOV S. Impulsive controllability and optimization problems in population dynamics[J]. Nonlinear Analysis:TMA,1999,36(7):881-890.
[2] KELLEY W G, PETERSON A C. Difference Equations:an Introduction with Applications[M]. New York:Academic Press,1991.
[3] ELAYDI S N. An Introduction to Difference Equations[M]. New York:Springer-Verlag,1996.
[4] 李萍,舒级,张佳,等. 一个具有相互作用非线性项的分数阶微分方程组的爆破解[J]. 四川师范大学学报(自然科学版),2016,39(1):15-19.
[5] 涂馨予,蒲志林. 一类带一般记忆核的Cahn-Hilliard方程解的能量衰减估计[J]. 四川师范大学学报(自然科学版),2016,39(1):20-25.
[6] 魏君,蒋达清,祖力. 一维p-Laplace二阶脉冲微分方程的奇异边值问题[J]. 应用数学学报,2013,36:414-430.
[7] 李耀红,张晓燕. Banach 空间中一类二阶非线性脉冲积分-微分方程边值问题解的存在性[J]. 应用数学,2011,24(1):112-119.
[8] 尚亚亚,李永祥. 二阶非线性积-微分方程边值问题解的存在性[J]. 四川师范大学学报(自然科学版),2016,39(6):833-837.
[9] 廖家锋,李红英,段誉. 一类奇异p-Laplacian方程正解的唯一性[J]. 西南大学学报(自然科学版),2016,38(6):45-49.
[10] 郭丽君. 非线性微分方程三阶三点边值问题一个正解的存在性[J]. 四川师范大学学报(自然科学版),2016,39(6):846-850.
[11] FENG M Q, XIE D X. Multiple positive solutions of multi-point boundary value problem for second-order impulsive differential equations[J]. J Comput Appl Math,2009,223(1):438-448.
[12] 田景霞. 无穷区间上二阶脉冲微分方程多点边值问题的正解[J]. 应用泛函分析学报,2012,4(3):315-320.
[13] SUN Y P. Positive solutions of nonlinear second-order m-point boundary value problem[J]. Nonlinear Analysis,2005,61(7):1283-1294.
[14] TADEUSZ J. Positive solutions of three-point boundary value problems for second order impulsive differential equations with advanced arguments[J]. Appl Math Comput,2008,197(1):179-189.
[15] JIANG W H, GUO Y P. Multiple positive solutions for second-order m-point boundary value problems[J]. J Math Anal Appl,2007,327(1):415-424.
[16] LIU X J, QIU J Q, GUO Y P. Three positive solutions for second-order m-point boundary value problems[J]. Appl Math Comput,2004,156(3):733-742.
[17] JIANG W H. The existence of positive solutions for second-order multi-point BVPs with the first derivative[J]. Comput Math Appl,2009,225(2):387-392.
[18] GUO D J, LAKSHMIKANTHAM V. Nonlinear Problems in Abstract Cones[M]. New York:Academic Press Inc,1988.
[19] GUO D J, LAKSHMIKANTHAM V, LIU X Z. Nonlinear Integral Equations in Abstract Spaces[M]. Dordrecht:Kluwer Academic Publishers,1996.

相似文献/References:

[1]杨丹丹,李刚.一阶非线性脉冲微分方程边值问题解的存在性[J].四川师范大学学报(自然科学版),2010,(06):763.
 YANG Dan dan,LI Gang.Existence of Solutions for Firstorder Nonlinear Impulsive Differential Equations with Boundary Value Problems[J].Journal of SichuanNormal University,2010,(04):763.
[2]王五生.一类非连续函数积分不等式中未知函数的估计[J].四川师范大学学报(自然科学版),2011,(01):43.
 WANG Wu sheng.Estimation of Unknown Functions of a Class of Integral Inequalities for Discontinuous Functions[J].Journal of SichuanNormal University,2011,(04):43.
[3]黄燕革,吴兴杰,秦桂毅,等.一类具有Beddington-DeAngelis功能反应和脉冲效应的两食饵一捕食者系统的动力学性质[J].四川师范大学学报(自然科学版),2011,(03):325.
 HUANG Yan ge,WU Xing jie,QIN Gui yi,et al.Dynamic Properties of TowPrey OnePredator System with BeddingtonDeAngelis Functional Response and Impulsive Effect[J].Journal of SichuanNormal University,2011,(04):325.
[4]李自尊.脉冲积分不等式未知函数的估计[J].四川师范大学学报(自然科学版),2013,(02):258.
 LI Zizun.Estimation of Unknown Function of Impulsive Integral Inequality[J].Journal of SichuanNormal University,2013,(04):258.
[5]杨志春.含脉冲的捕食与被捕食系统的持续生存和周期解[J].四川师范大学学报(自然科学版),2003,(03):247.
 YANG Zhi chun (. Department of Basic Course,Chengdu Textile College,Chengdu 00,et al.[J].Journal of SichuanNormal University,2003,(04):247.
[6]陈光淦,蒲志林,罗宏.一种变异的Lyapunov第二方法在脉冲微分方程中的应用[J].四川师范大学学报(自然科学版),2001,(06):557.
 CHEN Guang-gan,PU Zhi-lin,LUO Hong (Department of Mathematics,et al.[J].Journal of SichuanNormal University,2001,(04):557.

备注/Memo

备注/Memo:
收稿日期:2016-01-27
基金项目:四川省教育厅自然科学青年基金(12ZB108)
第一作者简介:李海艳(1983—),女,讲师,主要从事非线性泛函分析的研究,E-mail:jclihaiyan2012@163.com
更新日期/Last Update: 2017-04-30