[1]孙志阳,冯世林,何志蓉*.生化反应中一类p+q次多项式微分系统的闭轨不存在性[J].四川师范大学学报(自然科学版),2018,(03):311-313.[doi:10.3969/j.issn.1001-8395.2018.03.005]
 SUN Zhiyang,FENG Shilin,HE Zhirong.The Nonexistence of Closed Orbits in a Polynomial Differential System of Degree p+q Biochemical Reaction[J].Journal of SichuanNormal University,2018,(03):311-313.[doi:10.3969/j.issn.1001-8395.2018.03.005]
点击复制

生化反应中一类p+q次多项式微分系统的闭轨不存在性()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2018年03期
页码:
311-313
栏目:
基础理论
出版日期:
2018-03-15

文章信息/Info

Title:
The Nonexistence of Closed Orbits in a Polynomial Differential System of Degree p+q Biochemical Reaction
文章编号:
1001-8395(2018)03-0311-03
作者:
孙志阳 冯世林 何志蓉*
四川大学 数学学院, 四川 成都 610064
Author(s):
SUN Zhiyang FENG Shilin HE Zhirong
College of Mathematics, Sichuan University, Chengdu 610064, Sichuan
关键词:
微分方程 生化反应 闭轨
Keywords:
differential equation biochemical reaction closed orbits
分类号:
O193
DOI:
10.3969/j.issn.1001-8395.2018.03.005
文献标志码:
A
摘要:
研究生化反应中一类p+q分子反应模型(dx)/(dt)=1-ax-xpyq,(dy)/(dt)=b(xpyq-y),在a≥0,b>0的条件下,对一般的p、q进行了讨论,并利用Dulac判据进行分析,得出该系统闭轨不存在的条件.
Abstract:
We study a class of p+q multi-molecule reaction models, in biochemical reactions:(dx)/(dt)=1-ax-xpyq,(dy)/(dt)=b(xpyq-y). For a≥0 and b>0, we discuss the model with general parameters p and q, and d then we get a nonexistence condition of the closed orbits with Dulac criterion.

参考文献/References:

[1] HOU X, YAN R, ZHANG W. Bifurcations of a polynomial differential system of degreen in biochemical reactions[J]. Comput Math Appl,2002,43(10/11):1407-1423.
[2] 周建莹,张锦炎,曾宪武. 生化反应中一类非线性方程的定性分析[J]. 应用数学学报,1982,5(3):234-240.
[3] ESCHER C. Models of chemical reaction systems with exactly evaluable limit cycle oscillations[J]. Zeitschrift Für Physik B Condensed Matter and Quanta,1979,35(4):351-361.
[4] 李嘉旭,范弘毅,姜天来,等. 一类多分子反应微分方程模型的定性分析[J]. 生物数学学报,1990,5(2):162-170.
[5] 张伟年. 一类多分子反应微分方程模型的闭轨的存在性[J]. 应用数学和力学,1993,14(6):559-566.
[6] KWEK K H, ZHANG W. Periodic solutions and dynamics of a multimolecular reaction system[J]. Math Comput Modelling,2002,36(1/2):189-201.
[7] PONZO P J, WAX N. Note on a model of a biochemical reaction[J]. J Math Analysis Appl,1978,66(2):354-357.
[8] 蔡燧林,唐衡生. 一类生化反应方程的分枝[J]. 高校应用数学学报(中文版),1991,A6(1):145-158.
[9] ERLE D, MAYER K H, PLESSER T. The existence of stable limit cycles for enzyme catalyzed reactions with positive feedback[J]. Math Biosciences,1979,44(3):191-208.
[10] ERLE D. Nonuniqueness of stable limit cycles in a class of enzyme catalyzed reactions[J]. J Math Analysis & Appl,1981,82(2):386-391.
[11] TANG Y, ZHANG W. Bogdanov-Takens bifurcation of a polynomial differential system in biochemical reaction[J]. Comput Math Appl,2004,48(5/6):869-883.
[12] TANG Y, ZHANG W. Generalized normal sectors and orbits in exceptional directions[J]. Nonlinearity,2004,17(4):1407-1426.
[13] BOGDANOV R I. Versal deformations of a singular point of a vector field on the plane in the case of zero eigenvalues[J]. Functional Analysis & Its Applications,1975,9(2):144-145.
[14] 张锦炎. 常微分方程几何理论与分支问题[M]. 北京:北京大学出版社,1987.
[15] 张伟年,杜正东,徐冰. 常微分方程[M]. 北京:高等教育出版社,2006.

相似文献/References:

[1]潘立军.具偏差变元的一类三阶微分方程的周期解[J].四川师范大学学报(自然科学版),2011,(01):71.
 PAN Li jun.Periodic Solutions for a Class of Third Order Differential Equationswith Deviating Argument[J].Journal of SichuanNormal University,2011,(03):71.
[2]曾意.线性微分方程幂级数解的收敛半径[J].四川师范大学学报(自然科学版),2000,(03):291.
 ZENG Yi (Department of Mathematics,Neijiang Institute of Education,Neij iang,et al.[J].Journal of SichuanNormal University,2000,(03):291.

备注/Memo

备注/Memo:
收稿日期:2017-07-11 接受日期:2017-11-29
基金项目:四川省教育厅自然科学一般项目(16ZB0063)
*通信作者简介:何志蓉(1978—),女,讲师,主要从事微分方程与动力系统的研究,E-mail:419943425@qq.com
更新日期/Last Update: 2018-03-15