[1]何立官,陈贵云.关于Janko群的新刻画[J].四川师范大学学报(自然科学版),2018,(03):314-318.[doi:10.3969/j.issn.1001-8395.2018.03.006]
 HE Liguan,CHEN Guiyun.A New Characterization of Janko Groups[J].Journal of SichuanNormal University,2018,(03):314-318.[doi:10.3969/j.issn.1001-8395.2018.03.006]
点击复制

关于Janko群的新刻画()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2018年03期
页码:
314-318
栏目:
基础理论
出版日期:
2018-03-15

文章信息/Info

Title:
A New Characterization of Janko Groups
文章编号:
1001-8395(2018)03-0314-05
作者:
何立官1 陈贵云2
1.重庆师范大学 数学科学学院, 重庆 401331;
2.西南大学 数学与统计学院, 重庆 400715
Author(s):
HE Liguan1 CHEN Guiyun2
1.School of Mathematics Sciences, Chongqing Normal University, Chongqing 401331;
2.School of Mathematics and Statistics, Southwest University, Chongqing 400715
关键词:
Janko群 第一ONC-度量 刻画
Keywords:
In this paperwe characterize Janko groups only by their 1st ONC-Degree ONC1(G)st ONC-Degree ONCnko group the 1st ONC-Degree characterization
分类号:
O152.1
DOI:
10.3969/j.issn.1001-8395.2018.03.006
文献标志码:
A
摘要:
设G为有限群,o1(G)表示G中最高阶元素的阶,n1(G)表示G中最高阶元素的个数.设G一共有r个o1(G)阶元,其中心化子的阶两两不同,并依次设这些中心化子的阶为ci(G)(i=1,2,…,r).令ONC1(G)={o1(G); n1(G); c1(G),c2(G),…,cr(G)},称ONC1(G)为G的第一ONC-度量,用第一ONC-度量ONC1(G)刻画了Janko群.
Abstract:
Let G be a finite group, o1(G) denote the largest element order of G, and n1(G), the number of the elements of order o1(G).Assume that G totally has r elements of order o1(G), of which the centralizers are of different orders, and ci(G) denote the order of centralizer of ith element of order o1(G). Define ONC1(G)={o1(G); n1(G); c1(G), c2(G), …, cr(G)}. We call ONC1(G) is the 1st ONC-Degree of G.

参考文献/References:

[1] MAZUROV V D, KHUKHRO E I. Unsolved Problems in Group Theory[M]. Novosibirsk:Institute of Mathematics,Russian Academy of Sciences,2010:60.
[2] SHI W J. A new characterization of the sporadic simple groups[C]//Group Theory Porc Singapore Group Theory Conf,1987.Berlin:Walter de Gruyter,1989:531-540.
[3] SHI W J, BI J X. A characterization of the alternating groups[J]. Southeast Asian Bulletin of Mathematics,1992,16(1):81-90.
[4] SHI W J, BI J X. A characterization of Suzuki-Reegroups[J]. Science in China,1991,A34(1):14-19.
[5] SHI W J, BI J X. A characteristic property for each finite projective special linear group[J]. Lecture Notes in Math,1990,1456:171-180.
[6] SHI W J. Pure quantitative characterization of finite simple groups[J]. Progress in Nature Science,1994,4(3):316-326.
[7] CAO H P, SHI W J. Pure quantitative characterization of finite projective special unitary groups[J]. Science in China,2002,A45(6):761-772.
[8] XU M C, SHI W J. Pure quantitative characterization of finite simple groups 2Dn(q) and Dl(q)(l odd)[J]. Algebra Colloquium,2003,10(3):427-443.
[9] VASIL'EV A V, GRECHKOSEEVA M A, MAZUROV V D. Characterization of the finite simple Groups by spectrum and order[J]. Algebra and Logic,2009,48(6): 385-409.
[10] HE L G, CHEN G Y. A new characterization of simple K3-groups[J]. Communications in Algebra,2012,40(10):3903-3911.
[11] HE L G, CHEN G Y. A new characterization of L2(q) where q=pn<125[J]. Italian J Pure and Applied Mathematics,2011,28:127-136.
[12] HE L G, CHEN G Y, XU H J. A new characterization of Sporadic Simple Groups[J]. Italian J Pure and Applied Mathematics,2013,30: 373-392.
[13] HE L G, CHEN G Y. A new characterization of simple K4-groups with Type L2(p)[J]. 数学进展,2014,43(5):667-670.
[14] 何立官,徐海静. 关于单K3-群的自同构群的刻画[J]. 数学进展,2015,44(3):363-368.
[15] HE L G, CHEN G Y. A new characterization of simple K4- groups[J]. J Mathematical Research with Applications,2015,35(4):400-406.
[16] 高彦伟,曹洪平,陈贵云. 散在单群的新刻画[J]. 数学年刊,2016,A37(1):109-144.
[17] 杨成. 最高阶元素个数不同的有限群[J]. 数学年刊,1993,14(5):561-576.
[18] 姜友谊. 最高阶元素个数为2p2的有限群是可解群[J]. 数学年刊,2000,21(1):61-64.
[19] 杜祥林,姜友谊. 最高阶元素个数为4p的有限群[J]. 数学年刊,2004,29(3):198-200.
[20] HE L G, CHEN G Y. Solvability of finite groups with 10p elements of maximal order[J]. Appl Math Computer,2006,21(1):431-436.
[21] 何立官,陈贵云. 最高阶元素个数为10pm的有限群可解[J]. 西南大学学报(自然科学版),2007,29(6):1-4.
[22] WILLIAMS J S. Prime graph components of finite group[J]. J Algbra,1981,69(2):487-513.
[23] CONWAY J H, CURTIS R T, NORTON S P, et al. ATLAS of Finite Groups[M]. New York:Oxford University Press,1985.
[24] 陈贵云. 关于Frobenius群和2-Frobenius群[J]. 西南师范大学学报(自然科学版),1995,20(5):485-487.
[25] 徐明曜. 有限群初步[M]. 北京:科学出版社,2014:267-267.

备注/Memo

备注/Memo:
收稿日期:2017-10-09 接受日期:2017-11-02
基金项目:国家自然科学基金(11671324,11471266)、重庆市基础与前沿研究计划资助项目(cstc2015jcyjA00020)和重庆市教委科技资助项目(KJ1600325)
第一作者简介:何立官(1979—),男,副教授,主要从事有限群论的研究,E-mail:lghecqnu@126.com
更新日期/Last Update: 2018-03-15