[1]廖梦玲,夏福全*.逆拟变分不等式的扰动Levitin-Polyak适定性[J].四川师范大学学报(自然科学版),2018,(03):324-330.[doi:10.3969/j.issn.1001-8395.2018.03.008]
 LIAO Mengling,XIA Fuquan.Levitin-Polyak Wellposedness by Perturbations of Inverse Quasi-variational Inequalities[J].Journal of SichuanNormal University,2018,(03):324-330.[doi:10.3969/j.issn.1001-8395.2018.03.008]
点击复制

逆拟变分不等式的扰动Levitin-Polyak适定性()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2018年03期
页码:
324-330
栏目:
基础理论
出版日期:
2018-03-15

文章信息/Info

Title:
Levitin-Polyak Wellposedness by Perturbations of Inverse Quasi-variational Inequalities
文章编号:
1001-8395(2018)03-0324-07
作者:
廖梦玲 夏福全*
四川师范大学 数学与软件科学学院, 四川 成都 610066
Author(s):
LIAO Mengling XIA Fuquan
College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan
关键词:
逆拟变分不等式 扰动Levitin-Polyak适定性 近似解集
Keywords:
inverse quasi-variational inequalities Levitin-Polyak wellposedness by perturbations approximating solution set
分类号:
O176; O178
DOI:
10.3969/j.issn.1001-8395.2018.03.008
文献标志码:
A
摘要:
主要研究逆拟变分不等式的扰动Levitin-Polyak适定性.首先定义逆拟变分不等式的近似序列和Levitin-Polyak近似序列,然后定义逆拟变分不等式的近似解集,利用该解集讨论并得到逆拟变分不等式的扰动Levitin-Polyak-α-适定性的度量性质.
Abstract:
The purpose of this paper is to investigate Levitin-Polyak type well-posedness for inverse quasi-variational inequalities. We frist introduce the notion of approximating sequence and Levitin-Polyak approximating sequence of inverse quasi-variational inequalities. Then we introduce the approximating solution set of inverse quasi-variational inequalities and establish metric characterizations of Levitin-Polyak α-well-posedness by perturbations through the approximating solution set.

参考文献/References:

[1] DU D Z, PARDALOS P M, WU W L. Mathematical Theory of Optimization[M]. Berlin:Kluwer Academic Publishers,1993.
[2] PARDALOS P M, RESENDE M. Handbook of Applied Optimizatin[M]. Oxford:Oxford University Press,2002.
[3] PARDALOS P M, RASSIAS T M, KHAN A A. Nonlinear Analysis and Variational Problems[M]. New York:Springer-Verlag, 2010.
[4] TYKHONOV A N. On the stability of functional optimization problem[J]. Ussr Computational Mathematics and Mathematical Physics,1996,6(4):28-33.
[5] LEVITIN E S, POLYAK B T. Convergence of minimizing sequence in conditional extremum problem[J]. Soveit Math Dokl,1966,168(5):764-767.
[6] FANG Y P, HUANG N J, YAO J C. Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems[J]. J Global Optimization,2008,41(1):117-133.
[7] FANG Y P, HUANG N J, YAO J C. Well-posedness by perturbations of mixed variational inequalities in Banach spaces[J]. European J Operational Research,2010,201(3):682-692.
[8] HU R, FANG Y P. Well-posedness of inverse variational inequalities[J]. J Convex Analysis,2008,15(2):427-437.
[9] HU R, FANG Y P. Levitin-Polyak well-posedness by perturbations of inverse variational inequalities[J]. Optimiation Letters,2013,7(2):343-359.
[10] HU R, FANG Y P. Levitin-Polyak well-posedness of variational inequalities[J]. Nonlinear Analysis:TMA,2010,72(1):373-381.
[11] LIGNOLA M B, MORGAN J. Well-posedness for optimization problems with constraints defined by variational inequalities having a unique solution[J]. J Global Optimization,2000,16(1):57-67.
[12] LIGNOLA M B. Well-posedness and L-well-posedness for quasivariational inequalities[J]. J Optimization Theory and Application,2006,128(1):119-138.
[13] 黎小波,夏福全. Banach空间中广义向量混合变分不等式的扰动Levitin-Polyak适定性[J]. 四川师范大学学报(自然科学版),2013,36(6):811-819.
[14] LI X, ZOU Y Z. Existence result and error bounds for a new class of inverse mixed quasi-variational inequalities[J]. J Inequalities and Applications,2016,2016(1):1-13.
[15] AUSSEL D, GUPTA R, MEHRA A. Gap functions and error bounds for inverse quasi-variational inequality problems[J]. J Mathematical Analysis and Applications, 2013,407(2):270-280.
[16] AUSSEL D, CORREA R, MARECHAL M. Gap function for quasivariational inequalities and generalized Nash equilibrium problems[J]. J Optimization Theory and Application,2011,151(3):474-488.
[17] BAIOCCHI C, CAPELO A. Variational and Quasi-variational Inequalities:Application to Free Boundary Problems[M]. Chichester:John Wiley,1984.
[18] GUPTA R, MEHRA A. Gap function and error bounds for quasi-variational inequalities[J]. J Optimization,2012,53(4):737-748.
[19] PANG J C, FUKUSHIMA M. Quasi-variational inequalities,generalized Nash equilibria and multi-follower games[J]. Computational Management Science,2005,2(1):21-56.
[20] HE X, LIU H X. Inverse variational inequalities with projection-based solution method[J]. European J Operational Research,2011,208(1):12-18.
[21] 张石生. 变分不等式及其相关问题[M]. 重庆:重庆出版社,1991.
[22] CHEN C H, MA S Q, YANG J F. A general inertial proximal point algorithm for mixed variational inequality problem[J]. SIAM J Optimization,2015,25(4):2120-2142.
[23] CEGIELSKI A. Application of quasi-nonexpansive operators to an iterative method for variational inequality[J]. SIAM J Optimization,2015,25(4):2165-2181.

相似文献/References:

[1]黎小波,夏福全*.Banach空间中广义向量混合变分不等式的扰动Levitin-Polyak适定性[J].四川师范大学学报(自然科学版),2013,(06):811.
 LI Xiaobo,XIA Fuquan.LevitinPolyak Wellposedness by Perturbations of a Generalized Vector Mixed Variational Inequality in Banach Spaces[J].Journal of SichuanNormal University,2013,(03):811.

备注/Memo

备注/Memo:
收稿日期:2017-05-16 接受日期:2017-08-28
基金项目:教育部科学技术重点项目(212147)
*通信作者简介:夏福全(1973—),男,教授,主要从事最优化理论及其算法的设计研究,E-mail:fuquanxia@163.com
更新日期/Last Update: 2018-03-15