[1]马 烁,王安平*.拟从属关系定义的双单叶解析函数类[J].四川师范大学学报(自然科学版),2018,(03):366-373.[doi:10.3969/j.issn.1001-8395.2018.03.016]
 MA Shuo,WANG Anping.Certain Subclasses of Bi-univalent Functions Defined by Quasi-subordination[J].Journal of SichuanNormal University,2018,(03):366-373.[doi:10.3969/j.issn.1001-8395.2018.03.016]
点击复制

拟从属关系定义的双单叶解析函数类()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2018年03期
页码:
366-373
栏目:
基础理论
出版日期:
2018-03-15

文章信息/Info

Title:
Certain Subclasses of Bi-univalent Functions Defined by Quasi-subordination
文章编号:
1001-8395(2018)03-0366-08
作者:
马 烁12 王安平3*
1.荆州理工职业学院 基础课部, 湖北 荆州 434032;
2.武汉商学院 信息工程学院, 湖北 武汉 430056;
3.长江大学 工程技术学院, 湖北 荆州 434020
Author(s):
MA Shuo12 WANG Anping3
1.Department of Basic Course, Jingzhou Vocational College of Technology, Jingzhou 434032, Hubei;
2.Department of Information Engineering, Wuhan Business University, Wuhan 430056, Hubei;
3.College of Engineering and Technology, Yangtze University
关键词:
双单叶函数 星形函数 凸函数 拟从属 从属
Keywords:
bi-univalent functions starlike functions convex functions quasi-subordination subordination
分类号:
O174.51
DOI:
10.3969/j.issn.1001-8395.2018.03.016
文献标志码:
A
摘要:
利用拟从属关系定义3类单位圆盘U内的双单叶解析函数类,利用拟从属的性质研究得到它们的系数|a2| 和|a3| 的上界,并讨论一些应用广泛的函数类,推广一些已有结论.在证明技巧上和以往有一些变化.
Abstract:
The aim of this paper is to introduce and investigate three subclasses of bi-univalent functions defined by quasi-subordination in the open unit disk U. The coefficient estimates |a2| and |a3| for functions in these subclasses are obtained. The results generalize the recent works. There are a few changes in the proof method.

参考文献/References:

[1] ROBERTSON M S. Quasi-subordination and coefficient conjectures[J]. Bull Am Math Soc,1970,76(1):1-9.
[2] LEWIN M. On a coefficient problem for bi-univalent functions[J]. Proc Am Math Soc,1967,18(1):63-68.
[3] BRANNAN D A, CLUNIE J G. Aspects of Contemporary Complex Analysis[M]. New York:Academic Press,1979.
[4] NETANYAHU E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z|<1[J]. Arch Rational Mech Anal,1969,32(2):100-112.
[5] LASHIN A Y. On certain subclasses of analytic and bi-univalent functions[J]. J Egyptian Mathematical Society,2016,24(2):220-225.
[6] XU Q H, GUI Y C, SRIVASTAVA H M. Coefficient estimates for a certain subclass of analytic and bi-univalent functions[J]. Appl Math Lett,2012,25(6):990-994.
[7] SRIVASTAVA H M, MISHRA A K, GOCHHAYAT P. Certain subclasses of analytic and bi-univalent functions[J]. Appl Math Lett,2010,23(10):1188-1192.
[8] 李小飞,秦川. 一类利用从属关系定义的双单叶函数类[J]. 四川师范大学学报(自然科学版),2014,37(4):511-514.
[9] 熊良鹏,李小飞,刘晓丽. 受限于从属族的bi-单叶函数的系数边界[J]. 河南师范大学学报(自然科学版),2013,41(3):15-18.
[10] JANOWSKI W. Some extremal problems for certain families of analytic functions[J]. Int Ann Polon Math,1973,28(3):298-326.
[11] FRASIN B A, AOUF M K. New subclasses of bi-univalent functions[J]. Appl Math Lett,2011,24(9):1569-1573.
[12] DENIZ E. Certain subclasses of bi-univalent functions satisfying subordinate conditions[J]. J Classical Analysis,2013,2(1):49-60.
[13] JUMA A S R, AZIZ F S. Applying Ruscheweyh derivative on two subclasses of bi-univalent functuions[J]. Int J Basic Appl Sci,2012,12(6):68-74.
[14] BRANNAN D A, TAHA T S. On some classes of bi-univalent functions[J]. Math Anal Appl,1986,31(2):53-60.
[15] ALGAHTANI O. Estimates of initial coefficients for certain subclasses of bi-univalent functions involving quasi-subordination[J]. J Nonlinear Sci Appl,2017,10(3):1004-1011.
[16] GOYAL S P, KUMAR R. Coefficient estimates and quasi-subordination properties associated with certain subclasses of analytic and bi-univalent functions[J]. Math Slovaca,2015,65(3):533-544.
[17] KUMAR S S, KUMAR V, RAVICHANDRAN V. Estimates for the initial coefficients of bi-univalent functions[J]. Tamsui Oxford J Information & Mathematical Sciences,2012,29(4):487-504.
[18] GOYAL S P, SINGH O, MUKHERJEE R. Certain results on a subclass of analytic and bi-univalent functions associated with coefficient estimates and quasi-subordination[J]. Palestine J Math,2016,5(1):79-85.
[19] GOYAL S P, SINGH O. Estimates of quasi-subordination classes[J]. J Rajasthan Academy Phys Sci,2014,13(2):133-142.
[20] MAGESH N, BALAJI V K, YAMINI J. Certain subclasses of bi-starlike and bi-convex functions based on quasi-subordination[J]. Abstract and Applied Analysis,2016,2016(2):1-6.
[21] POMMERENKE C H. Univalent Functions[M]. Berlin:Springer-Verlag,1975.
[22] KEOGH F R, MERKES E P. A coefficient inequality for certain classes of analytic functions[J]. Proc Am Math Soc,1969,20(1):8-12.
[23] KANT S, VYAS P P. Certain subclasses of bi-univalent functions associate with quasi-subordination[J]. Rajasthan Academy of Physical Sciences,2016,15(4):315-325.

相似文献/References:

[1]周吉,萧平安.单叶函数平均值的叶数[J].四川师范大学学报(自然科学版),1993,(01):0.
 Zhou Ji Xiao Pingan (Department of Mathematics).[J].Journal of SichuanNormal University,1993,(03):0.

备注/Memo

备注/Memo:
收稿日期:2017-07-06 接受日期:2017-08-08
基金项目:湖北省自然科学基金(2013B301)和湖北省教育厅科技项目(2012B310)
*通信作者简介:王安平(1980—),男,副教授,主要从事最优化算法的研究,E-mail:2675146926@qq.com
更新日期/Last Update: 2018-03-15