[1]蒲晓琴.随机竞争Lotka-Volterra系统的正周期研究[J].四川师范大学学报(自然科学版),2018,(03):374-380.[doi:10.3969/j.issn.1001-8395.2018.03.017]
 PU Xiaoqin.On the Positive Periodic Solution of Stochastic Competition Lotka-Volterra Model[J].Journal of SichuanNormal University,2018,(03):374-380.[doi:10.3969/j.issn.1001-8395.2018.03.017]
点击复制

随机竞争Lotka-Volterra系统的正周期研究()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2018年03期
页码:
374-380
栏目:
基础理论
出版日期:
2018-03-15

文章信息/Info

Title:
On the Positive Periodic Solution of Stochastic Competition Lotka-Volterra Model
文章编号:
1001-8395(2018)03-0374-07
作者:
蒲晓琴
中国民航飞行学院 计算机学院, 四川 广汉 618307
Author(s):
PU Xiaoqin
School of Computer Science, Civil Aviation Flight University of China, Ganghan 618307, Sichuan
关键词:
周期解 随机微分方程 全局吸引性
Keywords:
periodic solution stochastic differential equations globally attractive
分类号:
O175.13
DOI:
10.3969/j.issn.1001-8395.2018.03.017
文献标志码:
A
摘要:
主要研究随机竞争Lotka-Volterra系统的周期系数,得到该方程周期解存在性和全局吸引性的充分条件.即使是在特殊情况下,结果也改进了文献(Jiang D,Shi N,Li X.J Math Anal Appl,2008,340(1): 588-597.)中的结果.
Abstract:
The main aim of this paper is to study stochastic competition Lotka-Volterra model with periodic coefficients.We obtain the sufficient conditions for the existence and global attractivity of periodic solution to the equation. Even in the special cases, the results in research literrature(Jiang D, Shi N, Li X. J Math Anal Appl,2008,340(1):588-597.)are improved.

参考文献/References:

[1] BAHAR A, MAO X. Stochastic delay Lotka-Volterra model[J]. J Math Anal Appl,2004,292(2):364-380.
[2] BAHAR A, MAO X. Stochastic hybrid delay population dynamics[J]. Int J Pure Appl Math,2006,11(4):377-399.
[3] MAO X. Delay population dynamics and environmental noise[J]. Stoch Dynam,2005,5(2): 149-162.
[4] MAO X, MARION G, RENSHAW E. Environmental Brownian noise suppresses explosions in population dynamics[J]. Stochastic Process Appl,2002,97(1):95-110.
[5] MAO X, MARION G, RENSHAW E. Asymptotic behavior of the stochastic Lotka-Volterra model[J]. J Math Anal Appl,2003,287(1):141-156.
[6] PANG S, DENG F, MAO X. Asymptotic property of stochastic population dynamics[J]. Dynam Contin Discrete Impuls Syst Ser A Math Anal,2008,15(5):603-620.
[7] JI C, JIANG D, SHI N, O'REGAN D. Existence, uniqueness, stochastic persistence and global stability of positive solutions of the logistic equation with random perturbation[J]. Math Methods Appl Sci,2007,30(1):77-89.
[8] JIANG D, SHI N. A note on nonautonomous logistic equation with random perturbation[J]. J Math Anal Appl,2005,303(1):164-172.
[9] JIANG D, SHI N, LI X. Global stability and stochastic permanence of anon-autonomous logistic equation with random perturbation[J]. J Math Anal Appl,2008,340(1):588-597.
[10] KHASMINSKII R Z, KLEBANER F C. Long term behavior of solutions of the Lotka-Volterra system under small random perturbations[J]. Ann Appl Probab,2001,11(3):952-963.
[11] ZHU C, YIN G. On hybrid competitive Lotka-Volterra ecosystems[J]. Nonlinear Anal,2009,71(2):1370-1379.
[12] ZHU C, YIN G. On competitive Lotka-Volterra model in random environments[J]. J Math Anal Appl,2009,357(1):154-170.
[13] LI X, MAO X. Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation[J]. Discrete Contin Dyn Syst,2009,24(2):523–545.
[14] LI X, GRAY A, JIANG D, MAO X. Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching[J]. J Math Anal Appl,2011,376(1):11-28.
[15] LIU M, WANG K. Persistence and extinction in stochastic non-autonomous logistic systems[J]. J Math Anal Appl,2011,375(2):443-457.
[16] LIU M, WANG K. Extinction and permanence in a stochastic nonautonomous population system[J]. Appl Math Lett,2010,23(12):1464-1467.
[17] ZHANG B, GOPALSAMY K. On the periodic solution of n-dimensional stochastic population models[J]. Stoch Anal Appl,2000,18(2):323-331.
[18] YAGI A, TON T. Dynamic of a stochastic predator-prey population[J].Appl Math Comput,2011,218(7):3100-3109.
[19] MAO X. Stochastic Differential Equations and Applications[M]. Chichester:Horwood Press,1997.
[20] XU D, YANG Z, HUANG Y. Existence-uniqueness and continuation theorems for stochastic functional differential equations[J]. J Diff Eqns,2008,245:1681-1703.
[21] WU F, HU S, LIU Y. Positive solution and its asymptotic behaviour of stochastic functional Kolmogorov-type system[J]. J Math Anal Appl,2010,364(1):104-118.
[22] LEADBETTER M R, CAMBANIS S. Measure and Probability Theory:A Basic Course[M]. Carolina:University of North Press,2002.
[23] BAINOV D D, KOLMANOVSKII V B. Periodic solution of stochastic functional differential equations[J]. Math J Toyama Univ,1991,14:1-39.
[24] HASMINSKII R Z. Stochastic Stability of Differential Equations[M]. Maryland:Sijthoff and Noordhoff,1980.
[25] BARBALAT I. Systems d'equations differential d'oscillations nonlineairies[J]. Rev Roumaine Math Pures Appl,1959(4):267-270.
[26] XU D, HUANG Y, YANG Z. Existence theorems for periodic Markov process and stochastic functional differential equations[J]. Discrete Contin Dyn Syst,2009,24(3):1005-1023.

相似文献/References:

[1]唐小平,李靖云,高文杰.食饵被开发并具有Holling III型的捕食系统周期解的存在性[J].四川师范大学学报(自然科学版),2008,(02):164.
 TANG X iaoping,LI Jingyun,GAO W enjie.Periodic Solution ofPredatorˉpreyModelExploited with FunctionalResponse[J].Journal of SichuanNormal University,2008,(03):164.
[2]邵远夫,李培峦.一类脉冲延滞微分方程正周期解存在的充分条件[J].四川师范大学学报(自然科学版),2008,(05):549.
 SHAO Yuanfu,LI Peiluan.SufficientConditions ofPositive Periodic Solutions of a Class ofDelay D ifferentialEquation with Impulse[J].Journal of SichuanNormal University,2008,(03):549.
[3]熊 莉,张 健.广义(3+1)维立方Schr⒐dinger方程新的精确解[J].四川师范大学学报(自然科学版),2009,(01):36.
 XIONG Li,ZHANG Jian.New Exact Solutions to Generalized(3+1)ˉdimensional Schr⒐dingerEquation[J].Journal of SichuanNormal University,2009,(03):36.
[4]董宁青,安天庆*,艾孜玛洪·努尔别克.二阶非自治(q,p)-Laplace方程周期解的存在性[J].四川师范大学学报(自然科学版),2012,(05):605.
 DONG Ning qing,AN Tian qing,Azmahin Nurbek.Existence Results for Periodic Solutions of Nonautonomous Secondorder Differential Systems with(q, p)Laplacian[J].Journal of SichuanNormal University,2012,(03):605.
[5]邓伟,蒲志林.一类中立型Duffing方程的周期解[J].四川师范大学学报(自然科学版),2012,(05):585.
 DENG Wei,PU Zhi lin.Periodic Solutions of Neutral Duffing Equations[J].Journal of SichuanNormal University,2012,(03):585.
[6]何莲花,刘安平.一阶脉冲微分方程的周期解(英)[J].四川师范大学学报(自然科学版),2013,(01):34.
 HE Lianhua,LIU Anping.Periodic Solution of Firstorder Differential Equation with Impulses[J].Journal of SichuanNormal University,2013,(03):34.
[7]叶一蔚.具有变号位势的二阶Hamilton系统周期解的存在性定理[J].四川师范大学学报(自然科学版),2013,(03):337.
 YE Yiwei.An Existence Theorem on Periodic Solutions of Second Order Hamiltonian Systems with a Changeable Sign Potential[J].Journal of SichuanNormal University,2013,(03):337.
[8]王少敏,杨存基.利用鞍点定理研究一类共振问题的周期解[J].四川师范大学学报(自然科学版),2013,(04):545.
 WANG Shaomin,YANG Cunji.Study on Periodic Solutions for a Class of Vibration Problem by Using the Saddle Point Theorem[J].Journal of SichuanNormal University,2013,(03):545.
[9]居加敏,王智勇*.一类带阻尼项的次二次二阶Hamilton系统的周期解[J].四川师范大学学报(自然科学版),2015,(03):329.[doi:10.3969/j.issn.1001-8395.2015.03.003]
 JU Jiamin,WANG Zhiyong.Periodic Solutions of a Class of Subquadratic Second OrderHamiltonian Systems with Damped Vibration[J].Journal of SichuanNormal University,2015,(03):329.[doi:10.3969/j.issn.1001-8395.2015.03.003]
[10]孟凤娟.带gyroscopic项的二阶系统周期解的存在性(英)[J].四川师范大学学报(自然科学版),2016,(05):643.[doi:10.3969/j.issn.1001-8395.2016.05.005]
 MENG Fengjuan.Periodic Solutions for Some Second Order Systems with Gyroscopic Forces[J].Journal of SichuanNormal University,2016,(03):643.[doi:10.3969/j.issn.1001-8395.2016.05.005]

备注/Memo

备注/Memo:
收稿日期:2016-06-21 接受日期:2017-10-19
基金项目:国家自然科学基金(11601446)和中国民航飞行学院面上项目(J2013-39)
作者简介:蒲晓琴(1986—), 女, 讲师, 主要从事微分方程的定性研究,E-mail:power1356@163.com
更新日期/Last Update: 2018-03-15