[1]户永清.硅量子点中的孪晶对其电子结构和光学性能的影响[J].四川师范大学学报(自然科学版),2018,(03):387-392.[doi:10.3969/j.issn.1001-8395.2018.03.019]
 HU Yongqing.The Electronic Structure and Optical Properties of Silicon Quantum Dots are Affected by the Twin Crystal in Silicon Quantum Dots[J].Journal of SichuanNormal University,2018,(03):387-392.[doi:10.3969/j.issn.1001-8395.2018.03.019]
点击复制

硅量子点中的孪晶对其电子结构和光学性能的影响()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2018年03期
页码:
387-392
栏目:
基础理论
出版日期:
2018-03-15

文章信息/Info

Title:
The Electronic Structure and Optical Properties of Silicon Quantum Dots are Affected by the Twin Crystal in Silicon Quantum Dots
文章编号:
1001-8395(2018)03-0387-06
作者:
户永清12
1.四川文理学院 智能制造学院, 四川 达州 63500;
2.电子科技大学 物理电子学院, 四川 成都 610054
Author(s):
HU Yongqing12
1.School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, Sichuan;
2.School of Physical Electronic, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan
关键词:
硅量子点 孪晶 形成 稳定性 光学特性
Keywords:
silicon quantum dots(Si QDs) twin crystal production stability optical property
分类号:
O474
DOI:
10.3969/j.issn.1001-8395.2018.03.019
文献标志码:
A
摘要:
以具有代表性的单孪晶和五重孪晶作为研究对象,运用密度泛函理论研究了孪晶结构的硅量子点的形成、稳定性、量子限域效应以及光学性质.结果表明,孪晶结构的硅量子点从热力学角度看是可以形成的,且孪晶结构可以增强硅量子点的稳定性; 孪晶的存在使得硅量子点的量子限域效应和光学吸收减弱.
Abstract:
In this paper, the formation, stability, quantum confinement effect and optical properties of the silicon quantum dots(Si QDs)with twin structure are studied by using the density functional theory. The research object is represented by single-twined and fivefold-twined silicon quantum dots. It is found that the formation of twinned Si QDs is thermodynamically possible and twinning enhances the stability of Si QDs. Both the quantum confinement effect and light absorption are weakened by twinning for Si QDs.

参考文献/References:

[1] BUUREN T V, DINH L N, CHASE L L, et al. Changes in the electronic properties of Si nanocrystals as a function of particle size[J]. Phys Rev Lett,1998,80(17):3803-3806.
[2] MASTRONARDI M L, MAIER-FLAIG F, FAULKNER D, et al. Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals[J]. Nano Lett,2012,12(1):337-342.
[3] WANG R, PI X, YANG D. Surface modification of chlorine-passivated silicon nanocrystals[J]. Phys Chem Chem Phys,2013,15(6):1815-1820.
[4] PI X D, KORTSHAGEN U. Nonthennal plasma synthesized freestanding silicon-germanium alloy nanocrystals[J]. Nanotechnology,2009,20(29):295602.
[5] PI X D, GRESBACK R, LIPTAK R W, et al. Doping efficiency dopant location and oxidation of Si nanocrystals[J]. Appl Phys Lett,2008,92(12):123102-123103.
[6] WANG Y Q, SMIRANI R, ROSS G G. Nanotwinning in silicon nanocrystals produced by ion implantation[J]. Nano Lett,2004,4(10):2041-2045.
[7] PI X D, MANGOLINI L, CAMPBELL S, et al. Room-temperature atmospheric oxidation of Si nanocrystals after Hf etching[J]. Phys Rev,2007,B75(8):794-802.
[8] DELERUE C, ALLAN G, LANNOO M. Theoretical aspects of the luminescence of porous silicon[J]. Phys Rev,1993,B48(15):11024-11036.
[9] HOFMEISTER H. Fivefold twinned nanoparticles[C]//Encyclopedia of Nanoscience & Nanotechnoiogy. Los Angeles:American Scientific Publishers,2004:431-452.
[10] NARAYAN J, NANDEDKAR A S. Atomic structure and energy of grain boundaries in silicon,germanium and diamond[J]. Philosophical Magazine,1991,B63(5):1181-1192.
[11] SAWADA H, ICHINOSE H. Atomic structure of fivefold twin center in diamond film[J]. Diamond and Related Materials,2005,14(1):109-112.
[12] DEGOLI E, CANTELE G, LUPPI E, et al. Ab initio structural and electronic properties of hydrogenated silicon nanoclusters in the ground and exeited state[J]. Phys Rev,2004,B69(15):1124-1133.
[13] WEISSKER H C, FURTHMIILLER J, BECHSTEDT F. Structural relaxation in Si and Ge nanocrystallites:influence on the electronic and optical properties[J]. Phys Rev,2003,B67(24):245304.
[14] CHEN X, PI X, YANG D. Critical role of dopant location for p-doped Si nanocrystals[J]. J Phys Chem,2011,115(3):661-666.
[15] PI X D, CHEN X, MA Y, et al. Optical absorption and emission of nitrogen-doped silicon nanocrystals[J]. Nanoscale,2011,3(11):4584-4588.
[16] NI Z, PI X, YANG D. Density functional theory study on a 1.4 nm silicon nanocrystal coated with carbon[J]. RSC Advances,2012,2(30):11227-11230.
[17] DELLEY B. From molecules to solids with the DMo13 approach[J]. J Chem Phys,2000,113(18):7756-7764.
[18] ABRAHAM F F. Homogeneous Ucleation Theory[M]. New York:Academic Press,1974.
[19] DING Y, WANG Y. Electronic structures of silicene fluoride and hydride[J]. Appl Phys Lett,2012,100(8):083102.
[20] FRUHBERGER B, ENG J, CHEN J G. Observation of anomalous reactivities of Ni/Pt(111)bimetallic surfaces[J]. Catalysis Lett,1997,45(1/2):85-92.
[21] LIU M,WANG L, LU G, et al. Twins in Cdl-xznxs solid solution:highly efficient photocatalyst for hydrogen generation from water[J]. Energy & Environmental Science,2011,4(4):1372-1378.

备注/Memo

备注/Memo:
收稿日期:2016-10-14 接受日期:2017-06-05
项目基金:四川省教育厅自然科学基金(14ZB0308)
作者简介:户永清(1969—),男,副教授,主要从事晶体掺杂材料、纳米材料的研究,E-mail:huyq519@126.com
更新日期/Last Update: 2018-03-15