[1]刘志强,谭武霜,熊清泉*.二型模糊真值代数性质[J].四川师范大学学报(自然科学版),2018,(04):463-470.[doi:10.3969/j.issn.1001-8395.2018.04.006]
 LIU Zhiqiang,TAN Wushuang,XIONG Qingquan.Algebraic Properties of Fuzzy Truth Value on Type-2 Fuzzy Sets[J].Journal of SichuanNormal University,2018,(04):463-470.[doi:10.3969/j.issn.1001-8395.2018.04.006]
点击复制

二型模糊真值代数性质()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2018年04期
页码:
463-470
栏目:
基础理论
出版日期:
2018-04-15

文章信息/Info

Title:
Algebraic Properties of Fuzzy Truth Value on Type-2 Fuzzy Sets
文章编号:
1001-8395(2018)04-0463-08
作者:
刘志强 谭武霜 熊清泉*
四川师范大学 数学与软件科学学院, 四川 成都 610066
Author(s):
LIU Zhiqiang TAN Wushuang XIONG Qingquan
College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan
关键词:
二型模糊集 模糊真值 并与交运算 最小t-模 最大t-余模
Keywords:
type-2 fuzzy sets fuzzy truth values join and meet operations minimum t-norm maximum t-conorm
分类号:
O159
DOI:
10.3969/j.issn.1001-8395.2018.04.006
文献标志码:
A
摘要:
讨论二型模糊真值在连续t-模(┬)与t-余模(┴)下的性质.首先给出具有单调函数的模糊真值性质,二型模糊集在最小t-模与最大t-余模下有限并与有限交的最大值性特征; 然后讨论凸模糊集在最小t-模与最大t-余模下的有限并与有限交性质; 最后得到具有相同最大值的凸模糊集在二型模糊的并与交运算下构成一个格.
Abstract:
In this paper, we discuss some properties of type-2 fuzzy truth value with minimum t-norm and maximum t-conorm.First, we give some properties of fuzzy truth value with monotonic function and properties of the maximum value of type-2 fuzzy sets with join and meet under minimum t-norm and maximum t-conorm.Next, we discuss properties of convex fuzzy sets with join and meet under minimum t-norm and maximum t-conorm.In the end, we prove that convex fuzzy sets with the same maximum under join and meet operations of type-2 fuzzy truth value form a lattice.

参考文献/References:

[1] ZADEH L.The conpect of a linguitic variable and its application to approximate reasoning-2[J].Learning Systems and Intelligent Robots,1975,8(4):199-249.
[2] WALKER C, WALKER E.The algebra of fuzzy truth values[J].Fuzzy Sets and Systems,2005,149(2):309-347.
[3] WALKER C, WALKER E.Type-2 operations on finite chains[J].Fuzzy Sets and Systems,2014,236(1):33-49.
[4] HARDING J, WALKER C, WALKER E.On complete sublattices of the algebra of truth values of type-2 fuzzy sets[J].IEEE International Fuzzy Systems Conference,2007,46:1-5.
[5] HARDING J, WALKER C, WALKER E.The variety generated by the truth value algebra of type-2 fuzzy and sets[J].Fuzzy Sets and Systems,2010,161(5):735-749.
[6] HARDING J, WALKER C, WALKER E.The Truth Value Algebra of Type-2 Fuzzy Sets:Order Convolutions of Functions on the Unit Interval[M].Boca Raton:CRC Press,2016.
[7] HARDING J, WALKER C, WALKER E.Lattices of convex normal functions[J].Fuzzy Sets and Systems,2008,159(9):1061-1071.
[8] DUBOIS D, PRADE H.Fuzzy Sets and Systems:Theory and Applications[M].New York:Academic Press,1980.
[9] MIZUMOTO M, TANAKA K.Some properties of fuzzy sets of type-2[J].Inform Control,1976,31(4):312-340.
[10] MIZUMOTO M, TANAKA K.Fuzzy sets of type-2 under algebraic product and algebraic sum[J].Fuzzy Sets and Systems,1981,5(3):277-290.
[11] NIEMINEN J.On the algebraic structure of fuzzy sets of type-2[J].Kybernetica,1997,13(4):261-273.
[12] LIANG Q, MENDEL J.Interval type-2 fuzzy logic systems:theory and design[J].IEEE Trans Fuzzy Systems,2000,8(5):535-550.
[13] LIANG Q, MENDEL J.Interval type-2 fuzzy logic systems[C]//Proceeding of the 2000 IEEE International Conference on Fuzzy Systems.Piscataway:IEEE Service Center,2000:328-333.
[14] GERA Z, DOMBIA J.Exact calculations of extended logical operations on fuzzy truth values[J].Fuzzy Sets and Systems,2008,159(11):1309-1326.
[15] GONZALO R, HANI H.Join and meet operations for type-2 fuzzy sets with nonconvex secondary memberships[J].IEEE Trans Fuzzy Systems,2016,24(4):1000-1008.
[16] HU B Q, KWONG C K.On type-2 fuzzy sets and their t-norm operations[J].Information Sciences,2014,255(10):58-81.
[17] HU B Q, WANG C Y.On type-2 fuzzy relations and interval-valued type-2 fuzzy sets[J].Fuzzy Sets and Systems,2014,236(2):1-32.
[18] WANG C Y, HU B Q.On fuzzy-valued operations and fuzzy-valued fuzzy sets[J].Fuzzy Sets and Systems,2014,268(1):72-92.

备注/Memo

备注/Memo:
收稿日期:2017-03-16 接受日期:2017-04-06
基金项目:国家自然科学基金(11201325)、四川省科技厅应用基础项目(2016JY0235)和四川省教育厅重点项目(16ZA0053)
*通信作者简介:熊清泉(1978—),男,教授,主要从事格上关系方程和二型模糊集的研究,E-mail:xqq309@msn.com
更新日期/Last Update: 2018-04-15