[1]王 超,黄娟娟,杨 潇.一类双质子耦合格点系统的对称周期解[J].四川师范大学学报(自然科学版),2018,(04):500-505.[doi:10.3969/j.issn.1001-8395.2018.04.012]
 WANG Chao,HUANG Juanjuan,YANG Xiao.Even and Periodic Solutions of a Class of Lattices Composed of Two Particles[J].Journal of SichuanNormal University,2018,(04):500-505.[doi:10.3969/j.issn.1001-8395.2018.04.012]
点击复制

一类双质子耦合格点系统的对称周期解()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2018年04期
页码:
500-505
栏目:
基础理论
出版日期:
2018-04-15

文章信息/Info

Title:
Even and Periodic Solutions of a Class of Lattices Composed of Two Particles
文章编号:
1001-8395(2018)04-0500-06
作者:
王 超 黄娟娟 杨 潇
盐城师范学院 数学与统计学院, 江苏 盐城 224001
Author(s):
WANG Chao HUANG Juanjuan YANG Xiao
School of Mathematics and Statistics, Yancheng Teacher's Univercity, Yancheng 224001, Jiangsu
关键词:
超线性 次线性 时间映射 格点系统 对称周期解
Keywords:
super-linear sub-linear time-mapping lattices even and periodic solutions
分类号:
O175.14
DOI:
10.3969/j.issn.1001-8395.2018.04.012
文献标志码:
A
摘要:
研究一类模拟2个质子相互作用的二阶带非负权耦合方程的对称周期解的问题.在一类关于时间映射的超线性条件和次线性条件下,利用相平面分析方法对方程进行研究,分别得到超线性方程无穷多个对称调和解的存在性以及次线性方程无穷多个对称次调和解的存在性.
Abstract:
In this paper, we are concerned with the existence of the even and periodic solutions for a class of coupled equations that model the motion of two particles on the real line.Under some super-linear and sublinear conditions on Time-mapping and by a fine phase-plane analysis, we prove the existence of infinite symmetric and harmonic solutions for super-linear equations as well as infinite symmetric and subharmonic solutions for the sublinear equations.

参考文献/References:

[1] TORRES P J, ZANOLIN F.Periodic motion of a system of two or there charged particles[J].J Math Anal Appl,2000,250(2):375-386.
[2] TORRES P J.Periodic motions forced infinite lattices with nearest neighbor interaction[J].Z Angew Math Phys,2000,51(3):333-345.
[3] TORRES P J.Necessary and sufficient conditions for existences of periodic motions of forced systems of particles[J].Z Angew Math Phys,2001,52(3):535-540.
[4] SUN J, MA S.Nontrivial periodic motions for resonant type asymptotically linear lattice dynamical systems[J].J Math Anal Appl,2014,417(2):622-634.
[5] WANG C, QIAN D.Periodic motions of a class of forced infinite lattices with nearest neighbor interaction[J].J Math Anal Appl,2008,340(1):44-52.
[6] DIBLÍK J, FE('overC)KAN M, POSPÍ(overS)IL M.Forced Fermi-Pasta-Ulam lattice maps[J].Miskolc Mathematical Notes,2013,14(1):63-78.
[7] GENDELMAN O.Exact solutions for discrete breathers in a forced-damped chain[J].Physical Review E:Statistical Nonlinear & Soft Matter Physics,2013,87(6):062911.
[8] LIU Z, GUO S, ZHANG Z.Existence of homoclinic travelling waves in infinite lattices[J].Bulletin of the Malaysian Mathematicalences Society,2013,36(4):965-983.
[9] ZHOU S F, HAN X Y.Pullback exponential attractors for non-autonomous lattice systems[J].J Dynamics and Differential Equations,2012,24(3):601-631.
[10] NAKAJIMA F.Even and periodic solution of the equation (¨overu)+g(u)=e(t)[J].J Diff Eqns,1990,83(2):277-299.
[11] 王超.一类带正权超线性对称方程对称周期解的分布[J].四川师范大学学报(自然科学版),2011,34(6):844-849.
[12] PAPINI D.Boundary value problems for second order differential equations with superlinear terms:a topological approach[D].Trrieste:Scuola Internazionale Superiore di Studi Avanzati,2000.
[13] 杨潇,周鑫,杨晓燕,等.一类次线性双质子耦合格点系统的周期解[J].四川师范大学学报(自然科学版),2016,39(2):236-241.
[14] DING T, ZANOLIN F.Subharmonic solution of second order nonlinear equations:a time-map approach[J].Nonlinear Analysis Theory Methods & Applications,1993,20(5):509-532.
[15] FABRY C, HABETS P.Periodic solutions of second order differential equations with superlinear asymmetric nonlinearities[J].Arch Math,1993,60(3):266-276.
[16] PAPINI D, ZANOLIN F.Differential equations with indefinite weight:boundary value problems and qualitative problems of the solutions[J].Rendiconti Del Seminario Matematico,2003,60(4):265-295.

相似文献/References:

[1]许丽萍,陈海波.三维空间中次线性Schrdinger-Kirchhoff型方程的无穷多个负能量解(英)[J].四川师范大学学报(自然科学版),2015,(01):46.
 XU Liping,CHEN Haibo (..Infinitely Many Negative Energy Solutions for Sublinear Schrdinger-Kirchhoff-Type Equations in R3[J].Journal of SichuanNormal University,2015,(04):46.
[2]何 勇,徐 博.带无界非线性项的两点边值振荡问题[J].四川师范大学学报(自然科学版),2016,(03):369.[doi:10.3969/j.issn.1001-8395.2016.03.012]
 HE Yong,XU Bo.Two Point Boundary Value Oscillating Problem with Unbounded Nonlinearity[J].Journal of SichuanNormal University,2016,(04):369.[doi:10.3969/j.issn.1001-8395.2016.03.012]
[3]何 勇,徐 博.半线性椭圆方程Neumann问题的无穷多解[J].四川师范大学学报(自然科学版),2017,(03):316.[doi:10.3969/j.issn.1001-8395.2017.03.007]
 HE Yong,XU Bo.Infinitely Many Solutions of Neumann Problem for Semilinear Elliptic Equations[J].Journal of SichuanNormal University,2017,(04):316.[doi:10.3969/j.issn.1001-8395.2017.03.007]

备注/Memo

备注/Memo:
收稿日期:2017-03-07 接受日期:2017-12-10
基金项目:国家自然科学基金(11571249)和江苏省自然科学基金(BK20171275)
第一作者简介:王 超(1974—),男,副教授,主要从事常微分方程和动力系统的研究,E-mail:2812644353@qq.com
更新日期/Last Update: 2018-04-15