[1]余 丽.实序线性空间中集值优化ε-Henig真有效元二阶复合切上图导数的最优性条件[J].四川师范大学学报(自然科学版),2018,(04):506-509.[doi:10.3969/j.issn.1001-8395.2018.04.013]
 YU Li.Optimality Condition for ε-Henig Proper Efficient Elements with Second-order Compound Contingent Epiderivates in Real Order Linear Spaces[J].Journal of SichuanNormal University,2018,(04):506-509.[doi:10.3969/j.issn.1001-8395.2018.04.013]
点击复制

实序线性空间中集值优化ε-Henig真有效元二阶复合切上图导数的最优性条件()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2018年04期
页码:
506-509
栏目:
基础理论
出版日期:
2018-04-15

文章信息/Info

Title:
Optimality Condition for ε-Henig Proper Efficient Elements with Second-order Compound Contingent Epiderivates in Real Order Linear Spaces
文章编号:
1001-8395(2018)04-0506-04
作者:
余 丽
宜春学院 数学与计算机科学学院和应用数学研究中心, 江西 宜春 336000
Author(s):
YU Li
Institute of Mathematics and Computer of Science, Research Centre of Applied Mathematics, Yichun University, Yichun 336000, Jiangxi
关键词:
ε-Henig真有效元 二阶复合切上图导数 最优性条件
Keywords:
ε-Henig proper efficient elements second-order compound contingent epiderivates optimality condition
分类号:
O224
DOI:
10.3969/j.issn.1001-8395.2018.04.013
文献标志码:
A
摘要:
在实序线性空间中,借助二阶复合切上图导数的概念,利用ε-Henig真有效元的性质,建立集值优化问题ε-Henig真有效元的二阶必要最优性条件,并推广了相关的结论.
Abstract:
In real ordered linear spaces, by employing the concept of second-order compound contingent epiderivative and the properties of ε- Henig proper efficient element, we establish the second-order necessary optimality condition of ε-Henig proper efficient element for set-valued optimization problem.The results in this paper generalize the correspording ones in the literature.

参考文献/References:

[1] AUBIN J P, FRANKOWSKA H.Set-valued Analysis[M].Boston:Birkhauser,1990.
[2] JAHN J, KHAN A A, ZEILINGER P.Second-order optimality conditions in set optimization[J].J Optim Theory Appl,2005,125(2):331-347.
[3] LI S J, ZHU S K, TEO K L.New generalized second-order contingent epiderivatives and set-valued optimization problems[J].J Optim Theory Appl,2012,152(3):587-604.
[4] ZHU S K, LI S J.New second-order contingent epiderivatives and set-valued optimization problems[J].Acta Math Appl Sin,2016,32(4):983-994.
[5] LI Z F.Benson proper efficiency in the vector optimization of set-valued maps[J].J Optim Theory Appl,1998,98(3):623-649.
[6] QIU Q S.Henig efficiency in vector optimization with nearly cone-subconvexlike set-valued functions[J].Acta Math Appl Sin,2007,23(2):319-328.
[7] LI T Y, XU Y H, ZHU C X.ε-Strictly efficient solutions of vector optimization problems with set-valued maps[J].Asia Pacific J Oper Res,2007,24(6):841-854.
[8] HERNANDEZ E, JIMENEZ B, NOVO V.Weak and proper efficiency in set-valued optimization on real linear spaces[J].J Convex Anal,2007,14(3):275-296.
[9] HERNANDEZ E, JIMENEZ B, NOVO V.Benson proper efficiency in set-valued optimization on real linear spaces[J].Lect Notes Econ Math Syst,2006,563(2):45-59.
[10] ZHOU Z A, PENG J W.Scalarization of set-valued optimization problems with generalized cone subconvexlikeness in real ordered linear spaces[J].J Optim Theory Appl,2012,154(3):830-841.
[11] ZHOU Z A, YANG X M.ε-Henig proper efficiency of set-valued optimization problems in real ordered linear spaces[J].Optim Lett,2014,8(6):1813-1827.
[12] JAHN J.Vector Optimization:Theory, Methods, and Application to Design Problems in Engineering[M].2nd ed.Berlin:Springer-Valerg,2011.
[13] 史树中.凸分析[M].上海:上海科学技术出版社,1990.
[14] JAHN J, RAUH R.Contingent epiderivatives and set-valued optimization[J].Math Meth Oper Res,1997,46(2):193-211.
[15] CHENG Y H, FU W T.Strong efficiency in a locally convex space[J].Mathematical Methods of Operations Research,1999,50(3):373-384.

备注/Memo

备注/Memo:
收稿日期:2017-06-17 接受日期:2017-08-28
基金项目:江西省教育厅科技项目(GJJ161031)
作者简介:余 丽(1980—),女,副教授,主要从事集值优化及应用的研究,E-mail:yulilyy@163.com
更新日期/Last Update: 2018-04-15