[1]张 露,刘喜兰.半正二阶三点边值问题正解的分歧结构[J].四川师范大学学报(自然科学版),2018,(04):516-521.[doi:10.3969/j.issn.1001-8395.2018.04.015]
 ZHANG Lu,LIU Xilan.Bifurcation Structure of Positive Solutions for Semipositone Second-order Three-point Boundary Value Problem[J].Journal of SichuanNormal University,2018,(04):516-521.[doi:10.3969/j.issn.1001-8395.2018.04.015]
点击复制

半正二阶三点边值问题正解的分歧结构()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2018年04期
页码:
516-521
栏目:
基础理论
出版日期:
2018-04-15

文章信息/Info

Title:
Bifurcation Structure of Positive Solutions for Semipositone Second-order Three-point Boundary Value Problem
文章编号:
1001-8395(2018)04-0516-06
作者:
张 露 刘喜兰
青海民族大学 数学与统计学院, 青海 西宁 810007
Author(s):
ZHANG Lu LIU Xilan
Department of Mathematics and Statistics, Qinghai Nationalities University, Xining 810007, Qinghai
关键词:
分歧理论 正解 拓扑度 半正问题
Keywords:
bifurcation theory positive solutions topological degree semipositone problem
分类号:
O175.8
DOI:
10.3969/j.issn.1001-8395.2018.04.015
文献标志码:
A
摘要:
在非线性项满足渐近线性增长条件下研究二阶三点半正边值问题{-u″(t)=λf(t,u(t)), t∈(0,1), u(0)=0, u(1)=αu(η)正解的分歧结构,其中λ>0为参数,f∈C([0,1]×[0,+∞),R),并且主要结果的证明基于分歧理论及拓扑度理论.
Abstract:
In this paper, we study the bifurcation structure of positive solutions for semipositone second-order three-point boundary value problem whose nonlinear term satisfies asymptotically linear conditions{-u″(t)=λf(t,u(t)), t∈(0,1), u(0)=0, u(1)=αu(η),where λ is a positive parameter, f∈C([0,1]×[0,+∞),R)is continuous.

参考文献/References:

[1] TIMOSHENKO S, GERE J.Theory of Elastic Stability[M].New York:McGraw-Hill,1962:35-48.
[2] LIU B.Positive solutions of a nonlinear three-point boundary value problem[J].Electronic J Diff Eqns,1999,132(1):11-28.
[3] WEBB J.Positive solutions of some three point boundary value problems via fixed point index theory[J].Nonlinear Analysis,2001,47(7):4319-4332.
[4] INFANTE G.Eigenvalues of some non-local boundary-value problems[J].Pro Edinburgh Mathematical Society,2003,46(1):75-86.
[5] LIU B.Positive solutions of a nonlinear three-point boundary value problem[J].Comput Math Appl,2002,44(1):201-211.
[6] YAO Q.An existence theorem of positive solution for a superlinear semipositone second-order three-point BVP[J].Mathematical Study,2002,35(1):33.
[7] XU X.Multiplicity results for positive solutions of some semi-positone three-point boundary value problems[J].J Math Anal Appl,2004,291(2):673-689.
[8] AMBROSETTI A, ARCOYA D, BUFFONI B.Positive solutions for some semi-positone problems via bifurcation theory[J].Diff Iniegral Eqns,1994,7(1):655-663.
[9] MA R, WANG H.Positive solutions for a nonlinear three-point boundary value problem[J].J Math Anal Appl,2003,297(1):1216-1227.
[10] 郑春华,刘文斌.一类p-Laplacian方程非局部问题解的存在性[J].四川师范大学学报(自然科学版),2013,36(6):856-861.
[11] 张露,马如云.渐近线性二阶半正离散边值问题正解的分歧结构[J].山东大学学报(理学版),2014,49(3):73-83.
[12] 李玉环,余萍,李玲.一类半线性抛物方程非局部问题的整体解[J].四川师范大学学报(自然科学版),2004,27(6):579-580.
[13] MA R.Positive solutions of three point nonlinear discrete second order boundary value problems[J].J Diff Eqns Appl,2004,10(2):129-138.
[14] MERDIVENCI F.Two positive solutions of a boundary value problem for difference equations[J].J Diff Eqns Appl,1995,1995(1):262-270.
[15] DAI G, MA R.Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian[J].J Diff Eqns,2012,2012(252):2448-2468.
[16] ZEIDLER E.Nonlinear Functional Analysis and Its Applications:I:Fixed-Point Theorems[M].New York:Springer-Verlag,1985:15.

相似文献/References:

[1]刘兴元.具p-Laplacian算子方程多点边值问题 3个正解的存在性[J].四川师范大学学报(自然科学版),2012,(01):78.
 LIU Xing yuan.Existence of Three Positive Solutions of a Multipoint BVP for pLaplacian Equations[J].Journal of SichuanNormal University,2012,(04):78.
[2]赵微.奇异三阶微分方程m点边值问题的正解[J].四川师范大学学报(自然科学版),2013,(02):252.
 ZHAO Wei.Positive Solutions of mpoint Boundary Value Problems for Singular Thirdorder Differential Equations[J].Journal of SichuanNormal University,2013,(04):252.
[3]蒋小玉,李永祥*.Banach空间脉冲微分方程Dirichelet边值问题的正解[J].四川师范大学学报(自然科学版),2013,(03):342.
 JIANG Xiaoyu,LI Yongxiang.Positive Solutions for Dirichelet Boundary Value Problems of Impulsive Differential Equations in Banach Spaces[J].Journal of SichuanNormal University,2013,(04):342.
[4]李小龙.有序Banach空间一类四阶边值问题正解的存在性[J].四川师范大学学报(自然科学版),2013,(03):388.
 LI Xiaolong.The Existence of Positive Solutions for a Class of Fourthorder Boundary Value Problems in Ordered Banach Spaces[J].Journal of SichuanNormal University,2013,(04):388.
[5]陆海霞.非线性椭圆型偏微分方程边值问题正解的存在性(英)[J].四川师范大学学报(自然科学版),2013,(04):540.
 LU Haixia.Existence of Positive Solutions for the Boundary Value Problems of Nonlinear Elliptic Partial Differential Equations[J].Journal of SichuanNormal University,2013,(04):540.
[6]蒋玲芳.一类四阶四点边值问题正解的存在性和多解性[J].四川师范大学学报(自然科学版),2013,(06):830.
 JIANG Lingfang.Existence and Multiplicity of Positive Solutions of a Class of Fourthorder Fourpoint Boundary Value Problems[J].Journal of SichuanNormal University,2013,(04):830.
[7]张稳根,胡卫敏*,刘刚.非线性分数阶微分方程组奇异对偶系统正解的存在性[J].四川师范大学学报(自然科学版),2013,(06):887.
 ZHANG Wengen,HU Weimin,LIU Gang.The Existence of a Positive Solution for a Singular Coupled System of Nonlinear Fractional Differential Equations[J].Journal of SichuanNormal University,2013,(04):887.
[8]汪媛媛,李永祥.四阶时滞微分方程边值问题的正解[J].四川师范大学学报(自然科学版),2014,(02):172.
 WANG Yuanyuan,LI Yongxiang.Positive Solutions for Boundary Value Problems of Fourthorder Differential Equations with Delay[J].Journal of SichuanNormal University,2014,(04):172.
[9]陈顺清.一类二阶算子系统正解的存在性及多解性[J].四川师范大学学报(自然科学版),2005,(05):538.
 CHEN Shun-qing(Department of Mathmatics,Daxian Teachers College,Dazhou 000,et al.[J].Journal of SichuanNormal University,2005,(04):538.
[10]苗宝军,梁庆利.具有Beddington-DeAngelis功能反应函数捕食模型正稳态解存在性[J].四川师范大学学报(自然科学版),2014,(03):331.
 MIAO Baojun,LIANG Qingli.The Existence of Positive Steadystate Solutions for a BeddingtonDeAngelis Functional Response Predatorprey Model[J].Journal of SichuanNormal University,2014,(04):331.

备注/Memo

备注/Memo:
收稿日期:2017-03-14 接受时期:2017-07-05
基金项目:国家自然科学基金(11361047和11561043)和青海省自然科学基金(2017-ZJ-908)
第一作者简介:张 露(1990—),女,助教,主要从事常微分方程边值问题的研究,E-mail:zhl992934235@163.com
更新日期/Last Update: 2018-04-15