[1]郭 锂.微积分的代数结构[J].四川师范大学学报(自然科学版),2018,(05):569-577.[doi:10.3969/j.issn.1001-8395.2018.05.001]
 GUO Li.Algebraic Structures from Calculus[J].Journal of SichuanNormal University,2018,(05):569-577.[doi:10.3969/j.issn.1001-8395.2018.05.001]
点击复制

微积分的代数结构()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2018年05期
页码:
569-577
栏目:
特约专稿
出版日期:
2018-06-15

文章信息/Info

Title:
Algebraic Structures from Calculus
文章编号:
1001-8395(2018)05-0569-09
作者:
郭 锂
罗格斯大学纽瓦克分校 数学与计算机科学系, 新泽西 07102, 美国
Author(s):
GUO Li
Department of Mathematics and Computer Science, Rutgers University, Newark, New Jersey 07102, USA
关键词:
代数 微分代数 积分代数 罗巴代数
Keywords:
algebra differential algebra integral algebra Roba algebra
分类号:
O153; O155
DOI:
10.3969/j.issn.1001-8395.2018.05.001
文献标志码:
A
摘要:
介绍微积分中产生的代数结构,包括微分代数和罗巴代数.从它们的研究过程中,说明一般代数理论的思想、方法和意义.重点考虑罗巴代数,通过其例子、结构和应用说明其重要性,并给出相关领域的一些公开问题和研究方向.
Abstract:
This article introduces algebraic structures from calculus, namely differential algebra and Rota-Baxter algebra.These algebras are used as examples to demonstrate motivations, methods and importance of algebraic theories.The emphasis is put on Rota-Baxter algebras, giving their examples, structures and applications.Open problems and directions of study are also suggested.

参考文献/References:

[1] RITT J F. Differential Algebra[M]. New York:AMS Colloquium Publications,1950.
[2] KOLCHIN E. Differential Algebra and Algebraic Groups[M]. New York:Academic Press,1973.
[3] SINGER M, Van der PUT M. Galois Theory of Linear Differential Equations[M]. New York:Springer-Verlag,2003.
[4] WU W T. A constructive theory of differential algebraic geometry based on works of J. F. Ritt with particular applications to mechanical theorem-proving of differential geometries[C]//Differential Geometry and Differential Equations, Shanghai,1985. Lecture Notes in Math. New York:Springer-Verlag,1987,1255:173-189.
[5] 蔡天新. 吴文俊的百年数学人生[OL].(2018-05-07)[2018-05-13]. https://zhuanlan.zhihu.com/p/36494309.
[6] COHN R M. Difference Algebra[M]. New York:Interscience Publishers,1965.
[7] BAXTER G. An analytic problem whose solution follows from a simple algebraic identity[J]. Pacific J Math,1960,10(3):731-742.
[8] ATKINSON F V. Some aspects of Baxter's functional equation[J]. J Math Anal Appl,1963,7(1):1-30.
[9] ROTA G C. Baxter algebras and combinatorial identities I, II[J]. Bull Am Math Soc,1969,75(75):325-329,330-334.
[10] ROTA G C, SMITH D A. Fluctuation theory and Baxter algebras[J]. Convegno di Calcolo delle probabilità, INDAM, Rome,1971, IX:179-201.
[11] ROTA G C. Baxter operators, an introduction[C]. JOSEPH P S K, ed. Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries. Boston:Birkhäuser,1995.
[12] GUO L. What is a Rota-Baxter algebra[J]. Notice of Am Math Soc,2009,56(11):1436-1437.
[13] GUO L. An Introduction to Rota-Baxter algebra[M]. Beijing:International Press and Higher Education Press,2012.
[14] GUO L, KEIGHER W. Baxter algebras and shuffle products[J]. Adv Math,2000,150(1):117-149.
[15] GUO L, KEIGHER W. On free Baxter algebras:completions and the internal construction[J]. Advances in Math,2000,151:101-127.
[16] EBRAHIMI-FARD K, GUO L. Rota-Baxter algebras and dendriform algebras[J]. J Pure Appl Alg,2005,212(2):320-339.
[17] EBRAHIMI-FARD K, GUO L. Rota-Baxter algebras and rooted trees[J] J Alg Appl,2008,7(2):167-194.
[18] BRZEZINSKI T. Rota-Baxter systems, dendriform algebras and covariant bialgebras[J]. J Alg,2016,460:1-25.
[19] BRZEZINSKI T. Curves Rota-Baxter systems[J]. Bull Belg Math Soc Simon Stevin,2016,23(5):713-720.
[20] MAKHOUF A. Hom-dendriform algebras and Rota-Baxter Hom-algebras[C]//Operad and Universal Algebra,2011:147-171.
[21] MAKHOUF A, YAU D. Rota-Baxter Hom-Lie-admissible algebra[J]. Commun Alg,2013,42(3):1231-1257.
[22] ZHENG S, GAO X, GUO L, et al. Rota-Baxter type operators, rewriting systems and Groebner-Shirshov bases[J]. J Symb Comput,arXiv:1412.8055.
[23] COLLINS J C. Renormalization[M]. Cambridge:Cambridge University Press,1984.
[24] CONNES A, KREIMER D. Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem[J]. Commun Math Phys,2000,210(1):249-273.
[25] EBRAHIMI-FARD K, GUO L, KREIMER D. Spitzer's identity and the algebraic Birkhoff decomposition in pQFT[J]. J Phys:Math Gen,2004,A37:11037-11052.
[26] EBRAHIMI-FARD K, GUO L, MANCHON D. Birkhoff type decompositions and the Baker-Campbell-Hausdorff recursion[J]. Commun Math Phys,2006,267(3):821-845.
[27] EBRAHIMI-FARD K, GUO L. Rota-Baxter algebras in renormalization of perturbative quantum field theory[C]//Universality and Renormalization. BINDER I, KREIMER D, ed. Fields Institute Communicatins,2007,50:47-105.
[28] GUO L, ZHANG B. Renormalization of multiple zeta values[J]. J Alg,2008,319(9):3770-3809.
[29] MANCHON D, PAYCHA S. Nested sums of symbols and renormalised multiple zeta values[J]. Int Math Res Notices,2010,2010:4628-4697.
[30] EBRAHIMI-FARD K, MANCHON D, SINGER J. The Hopf algebra of q-multiple polylogarithms with non-positive arguments[J]. Int Math Res Notices,2017(2017):4882-4922.
[31] GUO L. Algebraic Birkhoff Decomposition and its applications[C]//Automorphic Forms and the Langlands Program. Beijing:Higher Education Press and International Press,2009:35-62.
[32] GUO L, PAYCHA S, ZHANG B. Renormalisation and the Euler-Maclaurin formula on cones[J]. Duke Math J,2017,166(3):537-571.
[33] CLAVIER P, GUO L, PAYCHA S, et al. An algebraic formulation of the locality principle in renormalization[J/OL]. European J Mathematics,2018. https://doi.org/10.1007/s40879-018-0255-8.
[34] SEMENOV-TIAN-SHANSKY M A. What is a classical r-matrix? [J]. Funct Anal Appl,1983,17(4):259-272.
[35] BORDEMANN M. Generalized Lax pairs, the modified classical Yang-Baxter equation, and affine geometry of Lie groups[J]. Commun Math Phys,1990,135(1):201-216.
[36] KUPERSHMIDT B A. What a classical r-matrix really is?[J]. J Nonlinear Math Phys,1999,6(4):448-488.
[37] EBRAHIMI-FARD K. Loday-type algebras and the Rota-Baxter relation[J]. Lett Math Phys,2002,61(4):139-147.
[38] BAI C M. A unified algebraic approach to the classical Yang-Baxter equation[J]. J Phy:Math Theory,2007,A40(36):11073-11082.
[39] BAI C M, GUO L, NI X. Nonabelian generalized Lax pairs, the classical Yang-Baxter equation and Post Lie algebras[J]. Commun Math Phys,2010,297(2):553-596.
[40] BAI C M, GUO L, NI X. Generalizations of the classical Yang-Baxter equation and O-operators[J]. J Math Phys,2011,52(6):11073-170.
[41] BAI C M, GUO L, NI X. O-operators on associative algebras and associative Yang-Baxter equations[J]. Pacific J Math,2012,256(2):257-289.
[42] EBRAHIMI-FARD K, GUO L. Mixable shuffles, quasi-shuffles and Hopf algebras[J]. J Alg Comb,2006,24(1):83-101.
[43] YU H, GUO L, ZHAO J. Rota-Baxter algebras and left weak composition quasisymmetric functions[J]. Ramanujan J,2017,44(3):567-596.
[44] GUO L, THIBON J Y, YU H Y. Weak quasi-symmetric functions, Rota-Baxter algebras and Hopf algebras[J]. Advances in Math to appear. arXiv:1702.08011.
[45] AGUIAR M. Infinitesimal Hopf algebras[J]. Contemporary Mathematics,2000,267:1-29.
[46] AGUIAR M, LODAY J L. Quadri-algebras[J]. J Pure Appl Alg,2004,191(3):205-221.
[47] EBRAHIMI-FARD K,GUO L. On the products and dual of binary, quadratic, regular operads[J]. J Pure Appl Alg,2005,200:293-317.
[48] BAI C M, BELLIER B, GUO L, et al. Splitting of operations, Manin products and Rota-Baxter operators[J]. Inter Math Res Notices,2013,2013(3):485-524.
[49] PEI J, BAI C M, GUO L. Splitting of operads and Rota-Baxter operators on operads[J]. Appl Categorical Structures,2017,25:505-538.
[50] CHEN Y Q, MO Q H. Embedding dendriform algebra into its universal enveloping Rota-Baxter algebra[J]. Proc AMS,2010,139(12):4207-4216.
[51] GUBAREV V. Universal enveloping Rota-Baxter algebras of preassociative and postassociative algebras[J]. J Alg to appear. arXiv:1708.00168.
[52] GUBAREV V, KOLESNIKOV P. Groebner-Shirshov basis of the universal enveloping Rota-Baxter algebra of a Lie algebra[J]. arXiv:1602.07409.
[53] ROTA G C. Ten mathematics problems I will never solve[J]. DMV Mittellunge,1998,2:45-52.
[54] GUO L, KEIGHER W. On differential Rota-Baxter algebras[J]. J Pure Appl Alg,2008,212(3):522-540.
[55] ROSENKRANZ M, REGENSBURGER G. Solving and factoring boundary problems for linear ordinary differential equations in differential algebras[J]. J Symb Comput,2008,43(8):515-544.
[56] GAO X, GUO L, ROSENKRANZ M. Free integro-differential algebras and Gröbner-Shirshov bases[J]. J Alg,2015,442:354-396.

备注/Memo

备注/Memo:
收稿日期:2018-05-28 接受日期:2018-06-07
基金项目:国家自然科学基金(11771190)
作者简介:郭 锂(1960—),男,2011年国家“千人计划”特聘教授,主要从事数学和数学物理的研究,E-mail:liguo03@qq.com
更新日期/Last Update: 2018-04-15