[1]王云肖,舒 级*,杨 袁,等.带乘性噪声的随机分数阶Ginzburg-Landau方程的渐近行为[J].四川师范大学学报(自然科学版),2018,(05):591-595.[doi:10.3969/j.issn.1001-8395.2018.05.004]
 WANG Yunxiao,SHU JI,YANG Yuan,et al.Asymptotic Behavior of the Stochastic Fractional Ginzburg-Landau Equation with Multiplicative Noise[J].Journal of SichuanNormal University,2018,(05):591-595.[doi:10.3969/j.issn.1001-8395.2018.05.004]
点击复制

带乘性噪声的随机分数阶Ginzburg-Landau方程的渐近行为()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2018年05期
页码:
591-595
栏目:
基础理论
出版日期:
2018-06-15

文章信息/Info

Title:
Asymptotic Behavior of the Stochastic Fractional Ginzburg-Landau Equation with Multiplicative Noise
文章编号:
1001-8395(2018)05-0591-05
作者:
王云肖 舒 级* 杨 袁 李 倩 汪春江
四川师范大学 数学与软件科学学院, 四川 成都 610066
Author(s):
WANG Yunxiao SHU JI YANG Yuan LI Qian WANG Chunjiang
College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan
关键词:
随机分数阶Ginzburg-Landau方程 随机动力系统 随机吸引子 乘性噪声
Keywords:
stochastic fractional Ginzburg-Landau equation random dynamical system random attractor multiplicative noise
分类号:
O175.2
DOI:
10.3969/j.issn.1001-8395.2018.05.004
文献标志码:
A
摘要:
考虑带乘性噪声的随机分数阶Ginzburg-Landau方程在L2(R)空间中的渐近性质.首先将随机偏微分方程转化为仅含随机参数的随机方程,然后对该方程的解进行先验估计,从而得到随机动力系统的紧性,最后证明了L2(R)中随机吸引子的存在性.
Abstract:
In this paper, we consider the asymptotic dynamic for the fractional stochastic Ginzburg-Landau equation with multiplicative noise defined in L2(R2).Firstly, we transform the stochastic partial differential equation into the random equation that only contains the random parameter.Then, the compactness of the random dynamical system is established by a priori estimate for the solution, which shows the existence of a random attractor for the random dynamical system possesses in L2(R2).

参考文献/References:

[1] DOERING C R, GIBBON J D, HOLM D, et al. Low-dimensional behavior in the complex Ginzburg-Landau equation[J]. Nonlinearity,1988,1(2):279-309.
[2] GHIDAGLIA J M, HÉRON B. Dimension of the attractor associated to the Ginzburg-Landau equation[J]. Physica: Nonlinear Phenomena,1987,D28(3):282-304.
[3] BARTUCCELLI M, CONSTANTIN P, DOERING C R, et al. On the possibility of soft and hard turbulence in thecomplex Ginzburg-Landau equation[J]. Physica:Nonlinear Phenomena,1990,D44(3):421-444.
[4] DOERING C R, GIBBON J D, LEVERMORE C D. Weak and strong solutions of the complex Ginzburg-Landau equation [J]. Physica:Nonlinear Phenomena,1994,D71(3):285-318.
[5] LEVERMORE C D, OLIVER M. The Complex Ginzburg-Landau Equation as a Model Problem[C]//Lectures in Applied Mathematics. Providence:Am Math Soc,1997.
[6] BATUCCELLI M, GIBBON J D, OLIVER M. Lengths scales in solutions of the complex Ginzburg-Landau equation[J]. Physica:Nonlinear Phenomena,1996,D89(3):267-286.
[7] LI D L, GUO B L. On Cauchy problem for generalized complex Ginzburg-Landau equation in three dimensions[J]. Progress in Natural Science,2003,13(9):658-665.
[8] LI D L, DAI Z D. Long time behavior of solution for generalized Ginzburg-Landau equation[J]. J Math Anal Appl,2007,330(2):934-948.
[9] GUO B L, WANG X. Finite dimensional behavior for the derivative Ginzburg-Landau equation in two spatial dimensions[J]. Physica:Nonlinear Phenomen,1995,D89(1):83-99.
[10] CRAUEL H, FLANDOLI F. Attractors for random dynamical systems[J]. Probability Theory and Related Fields,1994,100(3):365 -393.
[11] CRAUEL H, DEBUSSCHE A, Flandoli F. Random attractors[J]. J Dyn Diff Eqns,1997,9(2):307-341.
[12] ARONLD L. Random Dynamical Systems[M]. New York:Springer-Verlag,1998.
[13] PU X K, GUO B L. Well-posedness and dynamics for the fractional Ginzburg-Landau equation[J]. Appl Anal,2013,92(2)318-334.
[14] 李栋龙, 郭柏灵. 带附加噪声的随机广义 2D Ginzburg-Landau 方程的渐进行为[J]. 应用数学和力学,2009,30(8):883-894.
[15] LU H, LÜ S J. Random attractor for fractional Ginzburg-Landau equation with multiplicative noise[J]. Taiwan J Math,2014,2(18):435-450.
[16] HUANG J H, SHEN T L. Dynamics of stochastic fractional boussinesq equations[J]. Disc Contin Dyn Syst,2015,B20:2051-2067.
[17] 郭柏灵,蒲学科,黄凤辉. 分数阶偏微分方程及其数值解[M]. 北京:科学出版社,2011.
[18] 张佳,舒级,董建,等. 具乘性噪声的广义Ginzburg-Landau方程的随机吸引子[J]. 四川师范大学学报(自然科学版),2015,38(5):638-643.
[19] 鲍杰,舒级. 高阶广义2D Ginzburg-Landau方程的随机吸引子[J]. 四川师范大学学报(自然科学版),2014,37(3):298-306.

相似文献/References:

[1]杜先云,陈炜.具有可加噪声的耗散KdV型方程的随机吸引子[J].四川师范大学学报(自然科学版),2012,(05):651.
 DU Xian yun,CHEN Wei.Random Attractors of Dissipative KdV Type Equation with Additive Noise[J].Journal of SichuanNormal University,2012,(05):651.
[2]鲍杰,舒级.高阶广义2D Ginzburg-Landau方程的随机吸引子[J].四川师范大学学报(自然科学版),2014,(03):298.
 BAO Jie,SHU Ji.Random Attractor for the Generalized 2D StochasticHigherOrder GinzburgLandau Equation[J].Journal of SichuanNormal University,2014,(05):298.
[3]张元元,陈光淦*.带Robin边界条件的2维随机Ginzburg-Landau方程的吸引子[J].四川师范大学学报(自然科学版),2015,(01):20.
 ZHANG Yuanyuan,CHEN Guanggan.Random Attractor for the 2-Dimensional Stochastic Ginzburg-Landau Equation with Robin Boundary Data[J].Journal of SichuanNormal University,2015,(05):20.
[4]张 佳,舒 级*,董 建,等.具乘性噪声的广义Ginzburg-Landau方程的随机吸引子[J].四川师范大学学报(自然科学版),2015,(05):638.[doi:10.3969/j.issn.1001-8395.2015.05.002]
 ZHANG Jia,SHU Ji,DONG Jian,et al.Random Attractor of Generalized Ginzburg-Landau Equation with Multiplicative Noise[J].Journal of SichuanNormal University,2015,(05):638.[doi:10.3969/j.issn.1001-8395.2015.05.002]
[5]詹勇,何平,周吉.关于随机动力系统的Julia集[J].四川师范大学学报(自然科学版),1999,(02):32.
 Zhan Yong ) He Ping ) Zhou Ji ) ( ) Mianyang Commercial College,Mianyang 000,Sichuan,et al.[J].Journal of SichuanNormal University,1999,(05):32.
[6]杨 袁,舒 级*,王云肖,等.带乘性噪声的广义2D Ginzburg-Landau方程的渐近行为[J].四川师范大学学报(自然科学版),2017,(02):143.[doi:10.3969/j.issn.1001-8395.2017.02.001]
 YANG Yuan,SHU Ji,WANG Yunxiao,et al.The Asymptotic Behavior of the Generalized 2D Ginzburg-Landau Equation with Multiplicative Noise[J].Journal of SichuanNormal University,2017,(05):143.[doi:10.3969/j.issn.1001-8395.2017.02.001]
[7]王云肖,舒 级*,杨 袁,等.带加性噪声的分数阶随机Ginzburg-Landau方程的渐近行为[J].四川师范大学学报(自然科学版),2017,(02):149.[doi:10.3969/j.issn.1001-8395.2017.02.002]
 WANG Yunxiao,SHU JI,YANG Yuan,et al.Asymptotic Behavior of the 2D Generalized Fractional Stochastic Ginzburg-Landau Equation with Additive Noise[J].Journal of SichuanNormal University,2017,(05):149.[doi:10.3969/j.issn.1001-8395.2017.02.002]

备注/Memo

备注/Memo:
收稿日期:2016-12-26 接受日期:2017-03-08
基金项目:国家自然科学基金(11371267和11571245)和四川省科技厅应用基础项目(2016JY0204)
*通信作者简介:舒 级(1976—),男,教授,主要从事随机动力系统和偏微分方程的研究,E-mail:shuji2008@hotmail.com
更新日期/Last Update: 2018-04-15