[1]汪 洋,张所滨,迟晓妮*,等.线性圆锥互补问题的非单调非精确光滑牛顿法[J].四川师范大学学报(自然科学版),2018,(05):607-613.[doi:10.3969/j.issn.1001-8395.2018.05.007]
 WANG Yang,ZHANG Suobin,CHI Xiaoni,et al.A Nonmonotone Inexact Smoothing Newton Method for Linear Circular Cone Complementarity Problems[J].Journal of SichuanNormal University,2018,(05):607-613.[doi:10.3969/j.issn.1001-8395.2018.05.007]
点击复制

线性圆锥互补问题的非单调非精确光滑牛顿法()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2018年05期
页码:
607-613
栏目:
基础理论
出版日期:
2018-06-15

文章信息/Info

Title:
A Nonmonotone Inexact Smoothing Newton Method for Linear Circular Cone Complementarity Problems
文章编号:
1001-8395(2018)05-0607-07
作者:
汪 洋1 张所滨2 迟晓妮3* 李 坤4
1.桂林电子科技大学 数学与计算科学学院 广西密码学与信息安全重点实验室, 广西 桂林 541004; 2.桂林电子科技大学 计算机与信息安全学院, 广西 桂林 541004; 3.桂林电子科技大学 数学与计算科学学院 广西高校数据分析与计算重点实验室, 广西 桂林 541004; 4.桂林电子科技大学 数学与计算科学学院 广西自动检测技术与仪器重点实验室, 广西 桂林 541004
Author(s):
WANG Yang1 ZHANG Suobin2 CHI Xiaoni3 LI Kun4
1.School of Mathematics and Computing Science, Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic Technology, Guilin 541004, Guangxi; 2.School of Computer Science and Information Security, Guilin University
关键词:
线性圆锥互补问题 非单调线搜索技术 非精确光滑牛顿法 光滑函数 局部二阶收敛
Keywords:
linear circular cone complementarity problems nonmonotone linear search scheme inexact smoothing Newton method smoothing function local quadratic convergence
分类号:
O224
DOI:
10.3969/j.issn.1001-8395.2018.05.007
文献标志码:
A
摘要:
给出求解圆锥互补问题的一种新的非单调非精确光滑牛顿法.基于一个圆锥互补函数的光滑函数,将线性圆锥互补问题转化成一个方程组,然后用非精确光滑牛顿法求解该方程组,并且在新算法中引入一个新的非单调线搜索技术.在适当假设下,证明该算法具有全局收敛性和局部二阶收敛速度.数值结果表明算法的有效性.
Abstract:
A new nonmonotone inexact smoothing Newton method is presented for solving circular cone complementarity problems in this paper.On the basis of a new smoothing function of circular cone complementary function, the linear circular cone complementarity problems is reformulated as a system of equations, and then a nonmonotone inexact smoothing Newton method is presented to solve this system of equations.The proposed algorithm uses a new nonmonotone linear search scheme.Under suitable assumptions, we show that the algorithm has the global convergence and local quadratic convergence.Preliminary numerical results illustrate the efficiency of our algorithm.

参考文献/References:

[1] DATTORRO J. Convex Optimization and Euclidean Distance Geometry[M]. California:Meboo Publishing,2005.
[2] ZHOU J C, CHEN J S. Properties of circular cone and spectral factorization associated with circular cone[J]. J Nonlinear and Convex Analysis,2013,14(4):807.
[3] WANG Y N, XIU N H, HAN J Y. On cone of nonsymmetric positive semidefinite matrices[J]. Linear Algebra and Its Applications,2010,433(4):718-736.
[4] KO C H, CHEN J S. Optimal grasping manipulation for multifingered robots using semismooth Newton method[J]. Mathematical Problems in Engineering,2013,2013(3):206-226.
[5] BOMZE I. Copositive optimization-recent developments and applications[J]. European J Operational Research,2012,216(3):509-520.
[6] BAI Y Q, GAO X R, WANG G Q. Primal-dual interior-point algorithms for convex quadratic circular cone optimization[J]. Numerical Algebra, Control and Optimization,2015,5(2):211-231.
[7] MIAO X H, GUO S J, QI N, et al. Constructions of complementarity functions and merit functions for circular cone complementarity problem[J]. Comput Optim Appl,2016,63(2):501.
[8] AHOOKHOSH M, AMINI K, BAHRAMI S. A class of nonmonotone Armijo-type line search method for unconstrained optimization[J]. Optimization,2012,61(4):389.
[9] ALIZADEH F, GOLDFARB D. Second-order cone programming[J]. Math Prog,2003,95(1):16.
[10] HAYASHI S, YAMASHITA N, FUKUSHIMA M. A combined smoothing and regularization method for monotone second-order cone complementarity problems[J]. SIAM J Optimization,2006,15(2):598.
[11] CLARKE F H. Optimization and Nonsmooth Analysis[M]. New York:John Wiley & Sons,1983.
[12] HUANG Z H, HU S, HAN J Y. Convergence of a smoothing algorithm for symmetric cone complementarity problems with a nonmonotone line search[J]. Science in China,2009,52(4):836.
[13] CHI X N, LIU S Y. A non-interior continuation method for second-order cone programming[J]. Optimization,2009,58(8):969.
[14] FUKUSHIMA M, LUO Z Q, TSENG P. Smoothing functions for second-order cone complementarity problems[J]. SIAM J Optimization,2002,12(2):448.
[15] CHI X N, WAN Z P, ZHU Z B, et al. A nonmonotone smoothing Newton method for circular cone programming[J]. Optimization,2016,65(12):2244.
[16] QI L, SUN D, ZHOU G. A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities[J]. Math Prog,2000,87(1):18.

备注/Memo

备注/Memo:
收稿日期:2017-07-03 接受日期:2017-09-11
基金项目:国家自然科学基金(11401126、71461005和11661002)、国家级大学生创新创业计划项目(201610595037)、广西自然科学基金(2016GXNSFBA380102和2014GXNSFFA118001)、广西密码学与信息安全重点实验室研究课题(GCIS201618)和广西自动检测技术与仪器重点实验室基金(YQ15112和YQ16112)
*通信作者简介:迟晓妮(1979—),女,副教授,主要从事最
更新日期/Last Update: 2018-04-15