[1]薛益民,刘 洁,戴振祥,等.一类非线性分数阶微分方程耦合系统边值问题解的存在性[J].四川师范大学学报(自然科学版),2018,(05):614-620.[doi:10.3969/j.issn.1001-8395.2018.05.008]
 XUE Yimin,LIU Jie,DAI Zhenxiang,et al.Existence of Solutions of the Boundary Value Problem for a Coupled System of Nonlinear Fractional Differential Equations[J].Journal of SichuanNormal University,2018,(05):614-620.[doi:10.3969/j.issn.1001-8395.2018.05.008]
点击复制

一类非线性分数阶微分方程耦合系统边值问题解的存在性()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2018年05期
页码:
614-620
栏目:
基础理论
出版日期:
2018-06-15

文章信息/Info

Title:
Existence of Solutions of the Boundary Value Problem for a Coupled System of Nonlinear Fractional Differential Equations
文章编号:
1001-8395(2018)05-0614-07
作者:
薛益民 刘 洁 戴振祥 徐媛媛
徐州工程学院 数学与物理科学学院, 江苏 徐州 221018
Author(s):
XUE Yimin LIU Jie DAI Zhenxiang XU Yuanyuan
School of Mathematics and Physics, Xuzhou University of Technology, Xuzhou 221018, Jiangsu
关键词:
分数阶微分方程 Green函数 耦合系统 不动点定理
Keywords:
fractional differential equations Green's function coupled system fixed point theorem
分类号:
O175.8
DOI:
10.3969/j.issn.1001-8395.2018.05.008
文献标志码:
A
摘要:
研究一类非线性Riemann-Liouville型分数阶微分方程耦合系统解的存在性.利用格林函数的性质和Guo-Krasnosel'skii's不动点定理,得到该耦合系统解存在性的充分条件,并举例说明结论的适用性.
Abstract:
In this paper, we study the existence of solutions for a coupled system of nonlinear Riemann-Liouville fractional differential equations.We obtain the sufficient conditions for existence of solutions by using the properties of the associated Green's function and Guo-Krasnoselskii's fixed point theorem.Then one example is given to illustrate the applicability of our main results.

参考文献/References:

[1]SUN Y, ZHAO M. Positive solutions for a class of fractional differential equations with integral boundary conditions[J]. Appl Math Lett,2014,34(1):17-21.
[2] ZHANG X, WANG L, SUN Q. Existence of positive solutions for a class of nonlinear fractional differential equations with integral boundary conditions and a parameter[J]. Appl Math Comput,2014,44(1/2):293-316.
[3] CHEN T, LIU W, HU Z. A boundary value problem for fractional differential equation with P-Laplacian operator at resonance[J]. Nonlinear Analysis,2012,75(6):3210-3217.
[4] GOODRICH S. On a fractional boundary value problem with fractional boundary conditions[J]. Appl Math Lett,2012,25(8):1101-1105.
[5] GRAEF R, KONG L. Positive solutions for a class of higher order boundary value problems with fractional Q-derivatives[J]. Appl Math Comput,2012,218(19):9682-9689.
[6] SHAH K, KHAN R A. Existence and uniqueness of positive solutions to a coupled system of nonlinear fractional order differential equations with anti-periodic boundary conditions[J]. Diff Eqns Appl,2015,7(2):245-262.
[7] JIANG W. Solvability for a coupled system of fractional differential equations with integral boundary conditions at resonance[J]. Adv Diff Eqns,2013,324(1):1-13.
[8] AHMAD B, NTOUYAS S K. A fully hadamard type integral boundary value problem of a coupled system of fractional differential equations[J]. Fractional Calculus and Applied Analysis,2014,17(2):348-360.
[9] SHAH K, KHALIL H, KHAN R A. Upper and lower solutions to a coupled system of nonlinear fractional differential equations[J]. Prog Fract Diff Appl,2016,2(1):1-10.
[10] BAI Z, LU H. Positive solutions for boundary value problem of nonlinear fractional differential equation[J]. J Math Anal Appl,2005,311(2):495-505.
[11] WANG Y, LIU L, WU Y. Positive solutions for a class of fractional boundary value problem with changing sign nonlinearity[J]. Nonlinear Analysis,2011,74(17):6434-6441.
[12] XU X J, JIANG D Q, YUAN C J. Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation[J]. Nonlinear Analysis,2009,71(10):4676-4688.
[13] KILBAS A A, SRIVASTAVA H M, TRUJILLO J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam:Elsevier,2006.
[14] PODIUBNY I. Fractional Differential Equations[M]. San Diego:Academic Press,1999.
[15] GUO D, LAKSHMIKANTHAM V. Nonlinear Problems in Abstract Cones[M]. San Diego:Academic Press,1988.
[16] JLELI M, SAMET B. Existence of positive solutions to a coupled system of fractional differential equations[J]. Mathematical Methods in the Applied Sciences,2015,38(6):1014-1031.
[17] 薛益民,苏有慧,刘洁,等. 一类分数阶微分方程耦合系统边值问题解的存在性[J]. 徐州工程学院学报(自然科学版),2018,33(1):41-47.

相似文献/References:

[1]古传运,郑凤霞,钟守铭.一类非线性分数阶微分方程边值问题正解的存在唯一性[J].四川师范大学学报(自然科学版),2015,(01):72.
 GU Chuanyun,ZHENG Fengxia,ZHONG Shouming.Unique Positive Solution for a Class of Nonlinear Fractional Differential Equation Boundary Value Problem[J].Journal of SichuanNormal University,2015,(05):72.
[2]何志乾.奇异二阶Neumann边值问题正解的存在性[J].四川师范大学学报(自然科学版),2015,(02):190.[doi:10.3969/j.issn.1001-8395.2015.02.008]
 HE Zhiqian.Existence of Positive Solutions of Second-Order SingularNeumann Boundary Value Problem[J].Journal of SichuanNormal University,2015,(05):190.[doi:10.3969/j.issn.1001-8395.2015.02.008]
[3]李 萍,舒 级*,张 佳,等.一个具有相互作用非线性项的分数阶 微分方程组的爆破解[J].四川师范大学学报(自然科学版),2016,(01):15.[doi:10.3969/j.issn.1001-8395.2016.01.003]
 LI Ping,SHU Ji,ZHANG Jia,et al.Blowing-up Solutions for a Nonlinear System of Fractional Differential Equations with Interaction Nonlinearity[J].Journal of SichuanNormal University,2016,(05):15.[doi:10.3969/j.issn.1001-8395.2016.01.003]
[4]杜心华.Laplace算子在某些空间图形上的Green函数[J].四川师范大学学报(自然科学版),1980,(01):0.
[5]蒋自国,董 彪.一类分数阶微分方程m点边值问题正解的存在性[J].四川师范大学学报(自然科学版),2018,(01):81.[doi:10.3969/j.issn.1001-8395.2018.01.016]
 JIANG Ziguo,DONG Biao.Existence of Positive Solutions for a Class of Fractional Differential Equations with m-point Boundary Value Conditions[J].Journal of SichuanNormal University,2018,(05):81.[doi:10.3969/j.issn.1001-8395.2018.01.016]
[6]贾建梅,王文霞*,姚佳欣.一类带有积分边界条件的分数阶微分方程正解的存在性[J].四川师范大学学报(自然科学版),2018,(02):197.[doi:10.3969/j.issn.1001-8395.2018.02.008]
 JIA Jianmei,WANG Wenxia,YAO Jiaxin.The Existence of Positive Solutions for a Class of Fractional Differential Equations with Integral Boundary Conditions[J].Journal of SichuanNormal University,2018,(05):197.[doi:10.3969/j.issn.1001-8395.2018.02.008]

备注/Memo

备注/Memo:
收稿日期:2017-11-20 接受日期:2018-02-27
基金项目:国家自然科学数学天元基金(11526177)和江苏省自然科学基金(BK20151160)
第一作者简介:薛益民(1977—),男,副教授,主要从事微分方程及其应用的研究,E-mail:xueym@xzit.edu.cn
更新日期/Last Update: 2018-04-15