[1]张 凡,潘文武,王利娟,等.MBE生长GaAsBi过程中Bi组分对背景杂质含量的影响[J].四川师范大学学报(自然科学版),2018,(05):662-667.[doi:10.3969/j.issn.1001-8395.2018.05.015]
 ZHANG Fan,PAN Wenwu,WANG Lijuan,et al.Influence of Bismuth on Background Impurities in GaAsBi Grown by Molecular Beam Epitaxy[J].Journal of SichuanNormal University,2018,(05):662-667.[doi:10.3969/j.issn.1001-8395.2018.05.015]
点击复制

MBE生长GaAsBi过程中Bi组分对背景杂质含量的影响()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2018年05期
页码:
662-667
栏目:
基础理论
出版日期:
2018-06-15

文章信息/Info

Title:
Influence of Bismuth on Background Impurities in GaAsBi Grown by Molecular Beam Epitaxy
文章编号:
1001-8395(2018)05-0662-06
作者:
张 凡123 潘文武13 王利娟13 张焱超123 宋禹忻1 张立瑶1 吴晓燕13 王庶民14*
1.中国科学院 上海微系统与信息技术研究所, 上海 200050; 2.上海科技大学 物质科学与技术学院, 上海 201210; 3.中国科学院大学, 北京 100190; 4.查尔姆斯理工大学 微技术和纳米科学系, 瑞典 哥德堡 41296
Author(s):
ZHANG Fan123 PAN Wenwu13 WANG Lijuan13 ZHANG Yanchao123SONG Yuxin1 ZHANG Liyao1 WU Xiaoyan13 WANG Shumin14
1.State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050; 2.School of Physical Science and Technology, Shanghai Tech University, Shanghai 20
关键词:
GaAsBi 背景杂质 Bi 分子束外延
Keywords:
GaAsBi background impurities bismuth molecular beam epitaxy
分类号:
TK730.2
DOI:
10.3969/j.issn.1001-8395.2018.05.015
文献标志码:
A
摘要:
用分子束外延(MBE)技术外延生长了GaAs1-xBix(0<x<0.05)合金样品,并通过二次离子质谱(SIMS)研究了样品中从MBE腔体背景引入的诸如C、H、O、N等杂质的含量分布.结果表明,随着Bi含量在3%~5%之间不断增加,杂质C的含量显著下降,而O的含量则在Bi组分达到5%时才显著减小.由于应力补偿作用的影响,N和Bi的分布呈现非常强的相关性.但是,并没有观察到Bi对于H含量的分布有明显的影响作用.这些发现对于提高GaAsBi材料的质量具
Abstract:
Impurities such as C, H, O and N introduced from the background during molecular beam epitaxy(MBE)growth of GaAs1-xBix alloys with x varied from 0-0.05 were studied by secondary ion mass spectroscopy. The results indicate that the C content can be decreased significantly with Bi concentrations in the 3%-5% range, while the O content can be reduced for ω=5%. A strong correlation between N and Bi distribution was observed as a result of strain compensation. However, no obvious effect of Bi on H incorporation was observed. These findings are important for improvement of material quality in GaAsBi compared with GaAs under the same growth condition.

参考文献/References:

[1] FOXON C T. Summary abstract:the effect of the oxygen concentration on the electrical and optical properties of AlGaAs films grown by MBE[J]. J Vacuum Science & Technology:Microelectronics and Nanometer Structures,1985,A3(1):131-140.
[2] CASEY H C, CHO A Y, LANG D V, et al. Investigation of heterojunctions for MIS devices with oxygen-doped AlxGa1-xAs on n-type GaAs[J]. J Appl Phys,1979,50(5):3484-3491.
[3] DE LYON T J, WOODALL J M, GOORSKY M S, et al. Lattice contraction due to carbon doping of GaAs grown by metalorganic molecular beam epitaxy[J]. Appl Phys Lett,1990,56(11):1040-1042.
[4] SPRUYTTE S G, COLDREN C W, HARRIS J S, et al. Incorporation of nitrogen in nitride-arsenides:origin of improved luminescence efficiency after anneal[J]. J Appl Phys,2001,89:4401-4406.
[5] JOHNSON N M, BURNHAM R D, STREET R A, et al. Hydrogen passivation of shallow-acceptor impurities inp-type GaAs[J]. Phys Rev,1986,B33:1102-1105.
[6] RADULESCU D C, WICKS G W, SCHAFF W J, et al. Effects of substrate misorientation and background impurities on electron transport in molecular-beam-epitaxial-grown GaAs/AlGaAs modulation-doped quantum-well structures[J]. J Appl Phys,1987,62:954-960.
[7] TIXIER S, ADAMCYK M, TIEDJE T, et al. Molecular beam epitaxy growth of GaAs1-xBix[J]. Appl Phys Lett,2003,82:2245-2247.
[8] ZHANG Y, MASCARENHAS A, WANG L W. Similar and dissimilar aspects of III-V semiconductors containing Bi versus N[J]. Phys Rev,2005,B71(15):155201.
[9] FRANCOEUR S, SEONG M J, MASCARENHAS A, et al. Band gap of GaAs1-xBix, 0<x<3.6%[J]. Appl Phys Lett,2003,82:3874.
[10] HUANG W, OE K, FENG G, et al. Molecular-beam epitaxy and characteristics of GaNyAs1-x-yBix[J]. J Appl Phys,2005,98:053505.
[11] PILLAI M, KIM S S, HO S, et al. Growth of InxGa1-xAs/GaAs heterostructures using Bi as a surfactant[J]. J Vac Sci Technol,2000,B18:1232-1236.
[12] WANG L, ZHANG L, YUE L, et al. Novel dilute bismide, epitaxy, physical properties and device application[J]. Crystals,2017,7(3):63.
[13] LEWIS R B, MASNADI-SHIRAZI M, TIEDJE T. Growth of high Bi concentration GaAs1-xBix by molecular beam epitaxy[J]. Appl Phys Lett,2012,101:082112.
[14] KINI R N, BHUSAL L, PTAK A J, et al. Electron Hall mobility in GaAsBi[J]. J Appl Phys,2009,106:043705.
[15] COOKE D G, HEGMANN F A, YOUNG E C, et al. Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy[J]. Appl Phys Lett,2006,89:122103.
[16] BEATON D A, LEWIS R B, MASNADI-SHIRAZI M, et al. Temperature dependence of hole mobility in GaAs1-xBix alloys[J]. J Appl Phys,2010,108:083708.
[17] WU X Y, WANG K, PAN W W, et al. Effect of rapid thermal annealing on InP1-xBix grown by molecular beam epitaxy[J]. Semiconductor Science and Technology,2015,30:094014.
[18] LU X, BEATON D A, LEWIS R B, et al. Composition dependence of photoluminescence of GaAs1-xBix alloys[J]. Appl Phys Lett,2009,95:041903.
[19] YUE L, ZHANG Y, ZHANG F, et al. Structural and optical properties of high Bi content GaSbBi films grown by molecular beam epitaxy[C]//28th Inter Conf Indium Phosphide & Related Materials & 43rd Inter Symposium on Compound Semiconductors. Compound Semiconductor Week,2016:1-2.
[20] SEGERCRANTZ N, SLOTTE J, MAKKONEN I, et al. Point defect balance in epitaxial GaSb[J]. Appl Phys Lett,2014,105:082113.
[21] MOHMAD A R, BASTIMAN F, HUNTER C J, et al. The effect of Bi composition to the optical quality of GaAs1-xBix[J]. Appl Phys Lett,2011,99:042107.
[22] MAZUR Y I, DOROGAN V G, BENAMARA M, et al. Effects of spatial confinement and layer disorder in photoluminescence of GaAs1-xBix/GaAs heterostructures[J]. J Phys:Appl Phys,2013,D46:065306.
[23] LI J, MARTINELLI R, KHALFIN V, et al. Growth and optimization of extremely high-pulse-power graded-index separate confinement heterostructure quantum well AlGaAs/InGaAs diode lasers with broadened waveguides[J]. J Electronic Materials,2005,34:156-160.
[24] GEBAUER J, KRAUSE-REHBERG R, EICHLER S, et al. Ga vacancies in low-temperature-grown GaAs identified by slow positrons[J]. Appl Phys Lett,1997,71:638-640.
[25] KAMINSKA M, LILIENTAL-WEBER Z, WEBER E R, et al. Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures[J]. Appl Phys Lett,1989,54:1881-1883.

备注/Memo

备注/Memo:
收稿日期:2017-04-12 接受日期:2017-05-03
基金项目:国家重点基础研究发展计划(2014CB643902)、国家自然科学基金(61404152)、中国科学院战略先导项目(XDA5-1)和国家自然科学创新研究群体项目(61321492)
*通信作者简介:王庶民(1963—),男,中组部千人计划,教授,主要从事III-V族化合物半导体异质结和纳米结构材料及其与Si基单片集成、二维材料的外延生长、材料物理、微电子和光电子器件研究,E-mail:shumin@mail.sim.
更新日期/Last Update: 2018-04-15