[1]岳 娜,谢加良*,陈水利.基于Sugeno积分形式的犹豫模糊多属性决策方法[J].四川师范大学学报(自然科学版),2019,(01):86.[doi:10.3969/j.issn.1001-8395.2019.01.013]
 YUE Na,XIE Jialiang,CHEN Shuili.The Method of Hesitant Fuzzy Multiple Attribute Decision Making Based on the Sugeno Integral Form[J].Journal of SichuanNormal University,2019,(01):86.[doi:10.3969/j.issn.1001-8395.2019.01.013]
点击复制

基于Sugeno积分形式的犹豫模糊多属性决策方法()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2019年01期
页码:
86
栏目:
基础理论
出版日期:
2018-12-15

文章信息/Info

Title:
The Method of Hesitant Fuzzy Multiple Attribute Decision Making Based on the Sugeno Integral Form
文章编号:
1001-8395(2019)01-0086-06
作者:
岳 娜1 谢加良1* 陈水利2
1.集美大学 理学院, 福建 厦门 361021; 2.集美大学诚毅学院 科研促进部, 福建 厦门 361021
Author(s):
YUE Na1 XIE Jialiang1 CHEN Shuili2
1.School of Science, Jimei University, Xiamen 361021, Fujian; 2.Research Promotion Office, Chengyi College, Jimei University, Xiamen 361021, Fujian
关键词:
犹豫模糊集 多属性决策 Sugeno积分 非可加测度 λ-测度
Keywords:
hesitant fuzzy sets multiple attribute decision making Sugeno integral nonadditive measure λ-measure
分类号:
O159
DOI:
10.3969/j.issn.1001-8395.2019.01.013
文献标志码:
A
摘要:
给出在犹豫模糊不确定决策信息背景下,属性间相互关联、相互作用时的多属性决策方法.通过定义基于Sugeno积分形式的犹豫模糊算子,讨论并证明其幂等性、单调性、有界性和可交换性等集成性质; 给出基于Sugeno积分形式的犹豫模糊多属性决策方法,并实例验证在多属性决策实际问题中的应用.
Abstract:
In this paper, we present a multiple attribute decision-making method in the context of hesitant fuzzy and uncertain decision-making information, in which the attributes are related and interact with each other. By defining hesitant fuzzy operator based on the Sugeno integral form, we discuss and provethe properties of aggregation function, such as idempotency, monotonicity, boundedness and commutativity, etc. We give the hesitant fuzzy multiple attribute decision-making method based on the Sugeno integral form, and use an actual example to verify the application of the practical problems in multiple attribute decision-making.

参考文献/References:

[1] WANG Z Y, KLIR G J. Fuzzy Measure Theory[M]. New York:Plenum Press,1992.
[2] WANG Z Y, KLIR G J. Generalized Measure Theory[M]. New York:Springer-Verlag,2009.
[3] GRABISCH M, SUGENO M, MUROFUSHI T. Fuzzy Measures and Integrals Theory and Applications:Theory and Applications[M]. Heidelberg:Physica Verlag,2000.
[4] QIU D, ZHANG W, LU C X. On fuzzy differential equations in the quotient space of fuzzy numbers[J]. Fuzzy Sets and Systems,2016,295(1):72-98.
[5] QIU D, LU C X, YU N X. On properties of decomposable measures and pseudo-integrals[J]. J Computational Analysis and Applications,2016,20(6):1043-1057.
[6] WEI G W, ZHAO X F, WANG H J, et al. Hesitant fuzzy choquet integral aggregation operators and their applications to multiple attribute decision making[J]. Information,2012,15(2):441-448.
[7] MENG F Y, CHEN X H, ZHANG Q. Generalized hesitant fuzzy generalized Shapley-Choquet integral operators and their application in decision making[J]. International J Fuzzy Systems,2014,16(3):400-410.
[8] JOSHI D, KUMAR S. Interval-valued intuitionistic hesitant fuzzy Choquet integral based TOPSIS method for multi-criteria group decision making[J]. European J Operational Research,2016,248(1):183-191.
[9] QU G H, ZHOU H S, QU W H, et al. Shapley interval-valued dual hesitant fuzzy Choquet integral aggregation operators in multiple attribute decision making[J]. J Intelligent and Fuzzy Systems,2017,34(3):1-19.
[10] LI X, ZHANG X H. Single-valued neutrosophic hesitant fuzzy Choquet aggregation operators for multi-attribute decision making[J]. Symmetry,2018,10(2):1-15.
[11] HU K, LI J Q. The entropy and similarity measure of interval valued intuitionistic fuzzy sets and their relationship[J]. International J Fuzzy Systems,2013,15(3):279-288.
[12] TORRA V. Hesitant fuzzy sets[J]. International J Intelligent Systems,2010,25(6):529-539.
[13] XIA M M, XU Z S. Hesitant fuzzy information aggregation in decision making[J]. International J Approximate Reasoning,2011,52(3):395-407.
[14] XU Z S, XIA M M. Distance and similarity measures for hesitant fuzzy sets[J]. Information Sciences,2011,181(11):2128-2138.
[15] WANG W Z, LIU X W. Some hesitant fuzzy geometric operators and their application to multiple attribute group decision making[J]. Technological and Economic Development of Economy,2014,20(3):371-390.
[16] WEI G W. Hesitant fuzzy prioritized operators and their application to multiple attribute decision making[J]. Knowledge-Based Systems,2012,31(1):176-182.
[17] XU Z S, ZHANG X L. Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight information[J]. Knowledge-Based Systems,2013,52(6):53-64.
[18] LIAO H C, XU Z S. Subtraction and division operations over hesitant fuzzy sets[J]. J Intelligent and Fuzzy Systems,2014,27(1):65-72.
[19] CHOQUET G. Theory of capacities[J]. Annales de l'institut Fourier,1954,5:131-295.

相似文献/References:

[1]林军,苏英.一类模糊属性值的多属性决策问题的排序方法[J].四川师范大学学报(自然科学版),2006,(04):450.
 LIN Jun,SU Ying(School of Science,Southwest University of Science and Technology,et al.[J].Journal of SichuanNormal University,2006,(01):450.

备注/Memo

备注/Memo:
收稿日期:2018-06-11 接受日期:2018-06-25
基金项目:国家自然科学基金(11771134)和福建省自然科学基金(2017J01558)
*通信作者简介:谢加良(1981—),男,副教授,主要从事非可加测度、非线性积分及其在数据挖掘的应用研究,E-mail:xiejialiang@jmu.edu.cn
更新日期/Last Update: 2018-12-15