[1]莫智文,杨 雪,江雨婷,等.量子密集编码的理论研究进展[J].四川师范大学学报(自然科学版),2019,(01):115.[doi:10.3969/j.issn.1001-8395.2019.01.018]
 MO Zhiwen,YANG Xue,JIANG Yutin,et al.Theoretical Quantum Dense Coding[J].Journal of SichuanNormal University,2019,(01):115.[doi:10.3969/j.issn.1001-8395.2019.01.018]
点击复制

量子密集编码的理论研究进展()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2019年01期
页码:
115
栏目:
基础理论
出版日期:
2018-12-15

文章信息/Info

Title:
Theoretical Quantum Dense Coding
文章编号:
1001-8395(2019)01-0115-13
作者:
莫智文 杨 雪 江雨婷 柏明强*
四川师范大学 数学与软件科学学院, 四川 成都 610066
Author(s):
MO Zhiwen YANG Xue JIANG Yutin BAI Mingqiang
College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan
关键词:
量子态 量子纠缠 量子密集编码 量子测量 Fourier变换
Keywords:
quantum state quantum entanglement quantum dense coding quantum measurement Fourier transformation
分类号:
O59
DOI:
10.3969/j.issn.1001-8395.2019.01.018
文献标志码:
A
摘要:
量子纠缠是量子信息论的1种重要物理资源.在经典通信中,发送1个经典比特,只能得到1个比特经典信息,而在量子通信中,利用量子纠缠的奇妙特性,发送1个量子比特,可以得到2个比特经典信息,这就是量子纠缠引发的新的关注点—量子密集编码.综述量子密集编码在量子信息论的研究现状,结合已有的Bennett密集编码方案和受控密集编码方案,展望了同时密集编码及受控同时密集编码在量子通信中的研究前景.
Abstract:
Quantum entanglement is an essential physical resource in quantum information theory. In classical communication, only one bit of classical information can be obtained by sending a classical bit. However, in quantum communication, by sending a qubit, we have the ability to achieve transmission of two bits of classical information, this is the new focus of quantum entanglement, namely quantum dense coding. In this paper, the current states and progress of quantum dense coding in quantum information theory are outlined. Combining the existing Bennett dense coding and controlled dense coding schemes, we discuss the prospect of the future work of simultaneous dense coding and controlled simultaneous dense coding.

参考文献/References:

[1] BENNETT C H, WIESNER S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states[J]. Physical Review Letters,1992,69(20):2881.
[2] MATTLE K, WEINFURTER H, KWIAT P G, et al. Dense coding in experimental quantum communication[J]. Physical Review Letters,1996,76(25):4656.
[3] BARENCO A, EKERT A K. Dense coding based on quantum entanglement[J]. J Modern Optics,1995,42(6):1253-1259.
[4] HAUSLADEN P, JOZSA R, SCHUMACHER B, et al. Classical information capacity of a quantum channel[J]. Physical Review,1996,A54(3):1869.
[5] BOSE S, VEDRAL V, KNIGHT P L. Multiparticle generalization of entanglement swapping[J]. Physical Review,1998,A57(2):822.
[6] LEE H J, AHN D, HWANG S W. Dense coding in entangled states[J]. Physical Review,2002,A66(2):024304.
[7] YE L, YU L B. Scheme for implementing quantum dense coding using tripartite entanglement in cavity QED[J]. Physics Letters,2005,A346(5/6):330-336.
[8] BOSE S, PLENIO M B, VEDRAL V. Mixed state dense coding and its relation to entanglement measures[J]. J Modern Optics,2000,47(2/3):291-310.
[9] LIU X S, LONG G L, TONG D M, et al. General scheme for superdense coding between multiparties[J]. Physical Review,2002,A65(2):022304.
[10] GRUDKA A, WJCIK A. Symmetric scheme for superdense coding between multiparties[J]. Physical Review,2002,A66(1):014301.
[11] BRAUNSTEIN S L, KIMBLE H J. Dense coding for continuous variables[J]. Physical Review,2000,A61(4):042302.
[12] HAO J C, LI C F, GUO G C. Controlled dense coding using the Greenberger-Horne-Zeilinger state[J]. Physical Review,2001,A63(5):054301.
[13] CHEN J L, KUANG L M. Quantum dense coding in multiparticle entangled states via local measurements[J]. Chinese Physics Letters,2004,21(1):12.
[14] LIU L S, CHEN G, RAO S. Controlled dense coding with generalized GHZ-type state[J]. International J Theoretical Physics,2012,51(12):3970-3977.
[15] HUANG Y B, LI S S, NIE Y Y. Controlled dense coding via GHZ-class state[J]. International J Modern Physics,2008,C19(10):1509-1514.
[16] HUANG J, HUANG G. Dense coding with extended GHZ-W state via local measurements[J]. International J Theoretical Physics,2011,50(9):2842-2849.
[17] LI S S. Dense coding with cluster state via local measurements[J]. International J Theoretical Physics,2012,51(3):724-730.
[18] YI X J, WANG J M, HUANG G Q. Controlled dense coding with six-qubit cluster state[J]. International J Theoretical Physics,2011,50(2):364-370.
[19] LIU X W. Controlled dense coding with non-symmetric quantum state[J]. International J Theoretical Physics,2015,54(4):1253-1257.
[20] JIANG D Y, WU R S, LI S S, et al. Controlled dense coding with symmetric state[J]. International J Theoretical Physics,2009,48(8):2297-2304.
[21] LIU D. Controlled dense coding with six-particle nonmaximal graph state[J]. International J Theoretical Physics,2015,54(8):2784-2791.
[22] WAN H Q. Controlled dense coding with a four-particle non-maximally entangled state[J]. International J Theoretical Physics,2010,49(9):2172-2179.
[23] LIU L S, HU G J, RAO S. Controlled dense coding with four-particle entangled state[J]. International J Theoretical Physics,2013,52(8):2904-2909.
[24] CHEN W W, HUANG Y X, LIU T K, et al. Quantum dense coding using a peculiar tripartite entangled state[J]. Chinese Physics,2007,16(1):38.
[25] LIU J, MO Z W, SUN S Q. Controlled dense coding using the maximal slice states[J]. International J Theoretical Physics,2016,55(4):2182-2188.
[26] LIU D S. Controlled dense coding with six-particle nonmaximal graph state[J]. International J Theoretical Physics,2015,54(8):2784-2791.
[27] ROY S, GHOSH B. Study of controlled dense coding with some discrete tripartite and quadripartite states[J]. International J Quantum Information,2015,13(5):1550033.
[28] SITU H Z, QIU D. Simultaneous dense coding[J]. J Physics A Mathematical & Theoretical,2010,43(5):055301.
[29] ZHANG C, SITU H Z, LI Q, et al. Efficient simultaneous dense coding and teleportation with two-photon four-qubit cluster states[J]. International J Quantum Information,2016,14(5):1650023.
[30] HUANG Z M, ZHANG C, SITU H Z. Performance analysis of simultaneous dense coding protocol under decoherence[J]. Quantum Information Processing,2017,16(9):227.
[31] SITU H Z. Controlled simultaneous teleportation and dense coding[J]. International J Theoretical Physics,2014,53(3):1003-1009.
[32] HU X M, GUO Y, LIU B H, et al. Beating the channel capacity limit for superdense coding with entangled ququarts[J]. Science Advances,2018,4(7):eaat9304.
[33] NIELSEN M A, CHUANG I L. Quantum Computation and Quantum Information[M]. Cambridge:Cambridge University Press,2000.
[34] 王美玉,闫凤利. 利用多粒子非最大纠缠态的多方概率密集编码[J]. 河北师范大学学报(自然科学版),2003,27(6):579-581.
[35] OH C, KIM H, JEONG K, et al. Minimal control power of controlled dense coding and genuine tripartite entanglement[J]. Scientific Reports,2017,7(1):3765.
[36] YANG X, BAI M Q, ZUO Z C, et al. Secure simultaneous dense coding using χ-type entangled state[J]. Quantum Information Processing,2018,17(10): 261.

相似文献/References:

[1]罗明星.量子远程制备的理论研究进展[J].四川师范大学学报(自然科学版),2015,(02):300.[doi:10.3969/j.issn.1001-8395.2015.02.028]
 LUO Mingxing.Theoretical Quantum Remote Preparations[J].Journal of SichuanNormal University,2015,(01):300.[doi:10.3969/j.issn.1001-8395.2015.02.028]

备注/Memo

备注/Memo:
收稿日期:2018-06-13 接受日期:2018-06-25
基金项目:国家自然科学基金(61673285、11671284)、四川省科技支撑计划项目(2017JY0197、2015JY0002)和四川省青年科技基金(2017JQ0046).
*通信作者简介:柏明强(1976年—),男,教授,主要从事人工智能和量子通信的研究,E-mail:baimq@sicnu.edu.cn
更新日期/Last Update: 2018-12-15