[1]文慧霞,舒 级*,李林芳.一类非自治随机波动方程的随机吸引子[J].四川师范大学学报(自然科学版),2019,42(02):168-175.[doi:10.3969/j.issn.1001-8395.2019.02.004]
 WEN Huixia,SHU Ji,LI Linfang.The Random Attractors of a Class of Non-autonomous Stochastic Wave Equations[J].Journal of SichuanNormal University,2019,42(02):168-175.[doi:10.3969/j.issn.1001-8395.2019.02.004]
点击复制

一类非自治随机波动方程的随机吸引子()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
42卷
期数:
2019年02期
页码:
168-175
栏目:
基础理论
出版日期:
2019-01-15

文章信息/Info

Title:
The Random Attractors of a Class of Non-autonomous Stochastic Wave Equations
文章编号:
1001-8395(2019)02-0168-08
作者:
文慧霞 舒 级* 李林芳
四川师范大学 数学与软件科学学院, 四川 成都 610066
Author(s):
WEN Huixia SHU Ji LI Linfang
College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610066, Sichuan
关键词:
非自治随机波动方程 随机动力系统 拉回吸引子 加性噪声
Keywords:
non-autonomous stochastic wave equation random dynamical systems pullback attractor additive noise
分类号:
O175.29
DOI:
10.3969/j.issn.1001-8395.2019.02.004
文献标志码:
A
摘要:
考虑带加性噪声的非自治随机波动方程在R3的有界区域D上的渐近行为.首先将随机偏微分方程转化为仅含随机参数的随机方程,然后运用解的一致估计方法证明随机吸收集的存在性,进一步利用压缩函数方法获得渐近紧性,最后得到随机动力系统拉回吸引子的存在性.
Abstract:
In this paper, we study the asymptotic behavior of non-autonomous stochastic wave equations with additive noise on a bounded domain VR3.Firstly, the partial differential equation is transfromed into the random equation that only includes the random parameters.Then the existence of pullback absorbing set is proved by uniform estimates of solution method.Moreover, from constructing contractive functions, asymptotic compactness is obtained.Finally, the existence of random attractor is given.

参考文献/References:

[1] WANG B.Random attractors for wave equation on unbounded domains[J].Discrete and Continuous Dynamical System,2009,4(1):800-809.
[2] WANG B.Asymptotic behavior of stochastic wave equations with critical exponents on R3[J].Transaction of the American Mathematical Society,2011,363(7):3639-3663.
[3] DELL'ORO F.Global attractors for strongly damped wave equations with subcritical-critical nonlinearities[J].Commun Pure Appl Anal,2013,12(2):1015-1027.
[4] BALL J M.Global attractors for damped semilinear wave equations[J].Discrete and Continuous Dynamical Systems,2004,10(2):31-52
[5] SUN C Y, CAO D M, DUAN J Q.Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity[J].Nonlinearity,2006,19(1):2645-2665.
[6] 韩英豪,马松.一类非自治随机波动方程拉回吸引子的存在性[J].辽宁师范大学学报(自然科学版),2014,37(4):441-451.
[7] 徐明亮.两类具有白噪声和记忆项的波动方程的D-拉回吸引子[D].湘潭:湘潭大学,2016.
[8] WANG B.Random attractors for non-autonomous stochastic wave equations with muliplicative noise[J].Discrete and Continuous Dynamical System,2014,34(1):269-300.
[9] WANG Z J, ZHOU S F.Random attractor for stochastic non-autonomous damped wave equation with critical exponent[J].Discrete and Continuous Dynamical System,2017,37(1):545-573.
[10] TEMAM R.Infinite-dimensional System in Mechanics and Physics[M].New York:Springer-Verlag,1988.
[11] CRAUEL H, FLAUDOLI F.Attractors for random dynamical system[J].Probability Theory and Related Fields,1994,100:365-393.
[12] CRAUEL H, DEBUSSECHE A, FANCO F.Random attractors[J].J Dyn Diff Eqns,1997,9(2):307-341.
[13] ARNOLD L.Random Dynamical System[M].New York:Springer-Verlag,1998.
[14] PETER E K, MARTIN R.Nonautonomous Dynamical System[M].Providence:American Mathematical Society,2011.
[15] 范小明.非自治无穷维动力系统和随机动力系统渐近行为的研究[D].成都:四川大学,2004.
[16] ZHAO C D, ZHOU S F.Random attractor for stochastic reaction-diffusion equation with muliplicative noise on unbouded domains[J].J Math Anal Appl,2011,384:160-172.
[17] BATES P W, LU K N, WANG B X.Random attractors for stochastic reaction-diffusion equations on unbouded domains[J].J Dyn Diff Eqns,2009,246:845-869.
[18] WANG X H, LI S Y, XU D Y.Random attractors for second-order stochastic lattic dynamical systems[J].Nonlinear Anal,2010,72(1):483-393.
[19] HUANG J H.The random attractor of stochastic FitzHugh-Nagumo equations in infinite lattice with white niose[J].Physica D:Nonlinear Phnomena,2007,233(2):83-94.
[20] GUO B, WANG G L, LI D L.The attractor of stochastic generalized Ginzburg-Landau equation[J].Science in China:Mathematics,2008,A51(5):955-964.
[21] 王蕊,李扬荣.带有可乘白噪声的广义Ginzburg-Landau方程的随机吸引子[J].西南大学学报(自然科学版),2012,34(2):92-95.
[22] 张佳,舒级,董建,等.具乘性噪声的广义Ginzburg-Landau方程的随机吸引子[J].四川师范大学学报(自然科学版),2015,38(5):638-643.
[23] 鲍杰,舒级.高阶广义2D Ginzburg-Landau方程的随机吸引子[J].四川师范大学学报(自然科学版),2014,37(3):298-306.
[24] 蔡东洪,范小明.具乘性白噪声耗散KdV型方程的随机吸引子[J].西南民族大学学报(自然科学版),2014,40(4):900-904.
[25] 张倩,范小明.耗散MKdV型方程的整体吸引子[J].云南民族大学学报(自然科学版),2012,22(2):128-131.
[26] GARCIA-LUENGO J, MARIN-RUBIO P, REAL J.Pullback attractors in V for non-autonomous 2D-Navier-Stokes equations and their tempered behavior[J].J Diff Eqns,2012,252(8):4333-4356.
[27] 韩英豪,贺亚静.RN上具有记忆项的非自治反应扩散方程的拉回吸引子的存在性[J].辽宁师范大学学报(自然科学版),2012,35(4):441-448.

相似文献/References:

[1]杜先云,陈炜.具有可加噪声的耗散KdV型方程的随机吸引子[J].四川师范大学学报(自然科学版),2012,(05):651.
 DU Xian yun,CHEN Wei.Random Attractors of Dissipative KdV Type Equation with Additive Noise[J].Journal of SichuanNormal University,2012,(02):651.
[2]鲍杰,舒级.高阶广义2D Ginzburg-Landau方程的随机吸引子[J].四川师范大学学报(自然科学版),2014,(03):298.
 BAO Jie,SHU Ji.Random Attractor for the Generalized 2D StochasticHigherOrder GinzburgLandau Equation[J].Journal of SichuanNormal University,2014,(02):298.
[3]张元元,陈光淦*.带Robin边界条件的2维随机Ginzburg-Landau方程的吸引子[J].四川师范大学学报(自然科学版),2015,(01):20.
 ZHANG Yuanyuan,CHEN Guanggan.Random Attractor for the 2-Dimensional Stochastic Ginzburg-Landau Equation with Robin Boundary Data[J].Journal of SichuanNormal University,2015,(02):20.
[4]张 佳,舒 级*,董 建,等.具乘性噪声的广义Ginzburg-Landau方程的随机吸引子[J].四川师范大学学报(自然科学版),2015,(05):638.[doi:10.3969/j.issn.1001-8395.2015.05.002]
 ZHANG Jia,SHU Ji,DONG Jian,et al.Random Attractor of Generalized Ginzburg-Landau Equation with Multiplicative Noise[J].Journal of SichuanNormal University,2015,(02):638.[doi:10.3969/j.issn.1001-8395.2015.05.002]
[5]詹勇,何平,周吉.关于随机动力系统的Julia集[J].四川师范大学学报(自然科学版),1999,(02):32.
 Zhan Yong ) He Ping ) Zhou Ji ) ( ) Mianyang Commercial College,Mianyang 000,Sichuan,et al.[J].Journal of SichuanNormal University,1999,(02):32.
[6]杨 袁,舒 级*,王云肖,等.带乘性噪声的广义2D Ginzburg-Landau方程的渐近行为[J].四川师范大学学报(自然科学版),2017,(02):143.[doi:10.3969/j.issn.1001-8395.2017.02.001]
 YANG Yuan,SHU Ji,WANG Yunxiao,et al.The Asymptotic Behavior of the Generalized 2D Ginzburg-Landau Equation with Multiplicative Noise[J].Journal of SichuanNormal University,2017,(02):143.[doi:10.3969/j.issn.1001-8395.2017.02.001]
[7]王云肖,舒 级*,杨 袁,等.带加性噪声的分数阶随机Ginzburg-Landau方程的渐近行为[J].四川师范大学学报(自然科学版),2017,(02):149.[doi:10.3969/j.issn.1001-8395.2017.02.002]
 WANG Yunxiao,SHU JI,YANG Yuan,et al.Asymptotic Behavior of the 2D Generalized Fractional Stochastic Ginzburg-Landau Equation with Additive Noise[J].Journal of SichuanNormal University,2017,(02):149.[doi:10.3969/j.issn.1001-8395.2017.02.002]
[8]王云肖,舒 级*,杨 袁,等.带乘性噪声的随机分数阶Ginzburg-Landau方程的渐近行为[J].四川师范大学学报(自然科学版),2018,(05):591.[doi:10.3969/j.issn.1001-8395.2018.05.004]
 WANG Yunxiao,SHU JI,YANG Yuan,et al.Asymptotic Behavior of the Stochastic Fractional Ginzburg-Landau Equation with Multiplicative Noise[J].Journal of SichuanNormal University,2018,(02):591.[doi:10.3969/j.issn.1001-8395.2018.05.004]
[9]王云肖,舒 级*,杨 袁,等.加权空间中带乘性噪声的随机分数阶非自治Ginzburg-Landau方程[J].四川师范大学学报(自然科学版),2019,42(04):491.[doi:10.3969/j.issn.1001-8395.2019.04.009]
 WANG Yunxiao,SHU Ji,YANG Yuan,et al.Stochastic Fractional Non-autonomous Ginzburg-Landau Equations with Multiplicative Noise in Weighted Space[J].Journal of SichuanNormal University,2019,42(02):491.[doi:10.3969/j.issn.1001-8395.2019.04.009]
[10]李 琴,陈光淦*,杨 敏.关于乘性噪声驱动的随机动力系统的中心流形的逼近[J].四川师范大学学报(自然科学版),2019,42(42卷):758.[doi:10.3969/j.issn.1001-8395.2019.06.007]
 LI Qin,CHEN Guanggan,YANG Min.Approximation of Centre Manifolds for Multiplicative Noise Driven Stochastic Dynamical Systems[J].Journal of SichuanNormal University,2019,42(02):758.[doi:10.3969/j.issn.1001-8395.2019.06.007]

备注/Memo

备注/Memo:
收稿日期:2017-04-18 接受日期:2017-08-28
基金项目:国家自然科学基金(11371267和11571245)和四川省科技厅应用基础计划项目(2016JY0204)
*通信作者简介:舒 级(1976—),男,教授,主要从事随机微分方程的研究,E-mail:shuji2008@hotmail.com
更新日期/Last Update: 2019-01-15