[1]岳香英,蒲志林*.一类带有记忆核的黏弹性方程解的能量衰减估计[J].四川师范大学学报(自然科学版),2019,(05):583-589.[doi:10.3969/j.issn.1001-8395.2019.05.003]
 YUE Xiangying,PU Zhilin.A Decay Result of the Energy to a Viscoelastic Equation with Memory Kernel[J].Journal of SichuanNormal University,2019,(05):583-589.[doi:10.3969/j.issn.1001-8395.2019.05.003]
点击复制

一类带有记忆核的黏弹性方程解的能量衰减估计()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2019年05期
页码:
583-589
栏目:
基础理论
出版日期:
2019-07-15

文章信息/Info

Title:
A Decay Result of the Energy to a Viscoelastic Equation with Memory Kernel
文章编号:
1001-8395(2019)05-0583-07
作者:
岳香英 蒲志林*
四川师范大学 数学科学学院, 四川 成都 610066
Author(s):
YUE Xiangying PU Zhilin
College of Mathematical Science, Sichuan Normal University, Chengdu 610066, Sichuan
关键词:
非退化 黏弹性方程 记忆核 能量衰减估计
Keywords:
non-dissipative viscoelasticity equation memory kernel energy decay estimation
分类号:
O175.29
DOI:
10.3969/j.issn.1001-8395.2019.05.003
文献标志码:
A
摘要:
主要研究一类带有非退化记忆核的黏弹性系统解的能量衰减问题.弱化记忆函数g在已有文献中通常所需满足呈指数衰减的假设条件,并给出新的假设条件.证明当黏弹性方程中的记忆函数g满足新的假设条件时,随着时间趋于无穷,系统的能量函数呈指数衰减与多项式衰减只是特殊的衰减方式.研究结果推广了已有文献的一些结果.
Abstract:
In this paper, we study the fading behavior of energy for the solutions of a viscoelastic system with non-dissipative memory kernel.We give some new weaker assumptions on the memory function g, under which we obtain the result that the exponential and polynomial types of decay are only special cases.This work generalizes and improves the known results.

参考文献/References:

[1] FABRIZIO M, MORRO A.Mathematical Problems in Linear Viscoelasticity[M].Philadelphia:Society for Industrial and Applied Mathematics,1992.
[2] LIU Z Y, ZHENG S M.Semigroups Associated with Dissipative Systems[M].London:Chapman and Hall/CRC Press,1999.
[3] RIVERA J E M, NASO M G.Optimal energy decay rate for a class of weakly dissipative second-order systems with memory[J].Appl Math Lett,2010,23(7):743-746.
[4] MESSAOUDI S A.General decay of the solution energy in a viscoelastic equation with a nonlinear source[J].Nonlinear Analysis:TMA,2008,69(8):2589-2598.
[5] FATORI L H, RIVERA J E M.Energy decay for hyperbolic thermoelastic systems of memory type[J].Quarterly of Applied Mathematics,2001,59(3):441-458.
[6] DAFERMOS C M.Asymptotic stability in viscoelasticity[J].Archive for Rational Mechanics and Analysis,1970,37(4):297-308.
[7] DAFERMOS C M.An abstract Volterra equation with applications to linear viscoelasticity[J].J Diff Eqns,1970,7(3):554-569.
[8] GREENBEG J M.A priori estimates for flows in dissipative materials[J].J Math Anal Appl,1977,60(3):617-630.
[9] HRUSA W J.Global existence and asymptotics stability for a semilinear volterra equation with large initial data[J].SIAM J Math Anal,1985,16(1):110-134
[10] BERRIMI S, MESSAOUDI S A.Existence and decay of solutions of a viscoelastic equation with a nonlinear source[J].Nonlinear Analysis:TMA,2006,64(10):2314-2331.
[11] CAVALCANTI M M, CAVALCANTI V N D, MARTINEZ P.General decay rate estimates for viscoelastic dissipative systems[J].Nonlinear Analysis:TMA,2008,68(1):177-193.
[12] RIVERA J E M, LAPA E C.Decay rates of solutions of an anisotropic inhomogeneous n-dimensional viscoelastic equation with polynomially decaying kernels[J].Commun Math Phys,1996,177(3):583-602.
[13] PARK J Y, KANG J R.Global existence and uniform decay for a nonlinear viscoelastic equation with damping[J].Acta Appl Math,2010,110(3):1393-1406.
[14] TATAR N.Arbitrary decays in linear viscoelasticity[J].J Math Phys,2011,52(1):013502-013502-12.
[15] RIVERA J E M, NASO M G, VEGNI F M.Asymptotic behavior of the energy for a class of weakly dissipative second-order systems with memory[J].J Math Anal Appl,2003,286(2):692-704.
[16] MESSAOUDIS A.General decay of solutions of a viscoelastic equation[J].J Math Anal Appl,2008,341(2):1457-1467.
[17] MEDJDEN M, TATAR N E.Asymptotic behavior for a viscoelastic problem with not necessarity decreasing kernel[J].Appl Math Comput,2005,167(2):1221-1235.
[18] KAFINI M, TATAR N.A decay result to a viscoelastic problem in Rn with an oscillating kernel[J].J Math Phys,2010,51(7):1581.
[19] NOZ J E M, RIVERA J E M, NASO M G.On the decay of the energy for systems with memory and indefinite dissipation[J].Asymptotic Anal,2006,49(3):189-204.
[20] SARE H D F, RIVERA J E M.Exponential decay of Timoshenko systems with indefinite memory dissipation[J].Adv Diff Eqns,2008,13(7/8):733-752.
[21] APPLEBY J, FABRIZIO M, LAZZARI B, et al.On exponential asymptotic stability in linear viscoelasticity[J].Math Models Methods Appl Sci,2006,16(10):1677-1694.

备注/Memo

备注/Memo:
收稿日期:2017-06-19 接受日期:2017-09-22
基金项目:四川省科技计划项目(2015JY0125)
*通信作者简介:蒲志林(1963—),男,教授,主要从事无穷维动力系统理论的研究,E-mail:puzhilinscnu@163.com
更新日期/Last Update: 2019-07-15