[1]覃桂茳,冀占江*,卢振坤.一类二阶微分方程的几个振动准则[J].四川师范大学学报(自然科学版),2019,(05):612-618.[doi:10.3969/j.issn.1001-8395.2019.05.007]
 QIN Guijiang,JI Zhanjiang,LU Zhenkun.Some Oscillation Criteria for Certain Second-order Differential Equations[J].Journal of SichuanNormal University,2019,(05):612-618.[doi:10.3969/j.issn.1001-8395.2019.05.007]
点击复制

一类二阶微分方程的几个振动准则()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2019年05期
页码:
612-618
栏目:
基础理论
出版日期:
2019-07-15

文章信息/Info

Title:
Some Oscillation Criteria for Certain Second-order Differential Equations
文章编号:
1001-8395(2019)05-0612-07
作者:
覃桂茳12 冀占江12* 卢振坤3
1.梧州学院 信息与电子工程学院, 广西 梧州 543002; 2.梧州学院 广西高校图像处理与智能信息系统重点实验室, 广西 梧州 543002; 3.广西民族大学 信息科学与工程学院, 广西 南宁 530006
Author(s):
QIN Guijiang12 JI Zhanjiang12 LU Zhenkun3
1.School of Information and Electronic Engineering, Wuzhou College, Wuzhou 543002, Guangxi; 2.Guangxi Colleges and Universities Key Laboratory of Image Processing and Intelligent Information System, Wuzhou College, Wuzhou 543002, Guangxi; 3.College of I
关键词:
振动性 Emden-Fowler型微分方程 非线性中立项 Riccati变换
Keywords:
oscillation Emden-Fowler functional differential equation nonlinear neutral Riccati transformation
分类号:
O175.7
DOI:
10.3969/j.issn.1001-8395.2019.05.007
文献标志码:
A
摘要:
利用Riccati变换技术及数学分析技巧,研究具有非线性中立项的二阶广义Emden-Fowler型微分方程的振动性,获得该方程振动的几个新型判别准则,所举例子说明,这些准则不仅推广并改进了一些已有的结果,而且具有较好的实用性和可操作性.
Abstract:
We study the oscillatory behavior of second-order generalized Emden-Fowler-type differential equations with a nonlinear neutral term.By using the generalized Riccati transformation and integral averaging technique, we establish some new oscillation criteria for the equations.Some examples are provided to show that our results generalize and improve the known results, and is practicable and maneuverable.

参考文献/References:

[1] AGARWAL R P, BOHNER M, LI W T.Nonoscillation and Oscillation:Theory for Functional Differential Equations[M].New York:Marcel Dekker,2004.
[2] HASANBULLI M, ROGOVCHENKO Y V.Oscillation criteria for second order nonlinear neutral differential equations[J].Appl Math Comput,2010,215(12):4392-4399.
[3] LI T, AGARWAL R P, BOHNER M.Some oscillation results for second-order neutral differential equations[J].J Indian Math Soc,2012,79(1):97-106.
[4] LI T, ROGOVCHENKO Y V, ZHANG C.Oscillation of second-order neutral differential equations[J].Funkcial Ekvac,2013,56(1):111-120.
[5] LIN X, TANG X.Oscillation of solutions of neutral differential equations with a superlinear neutral term[J].Appl Math Lett,2007,20(9):1016-1022.
[6] HAN Z, LI T, SUN S, et al.Remarks on the paper[J].Appl Math Comput,2010,215:3998-4007.
[7] SUN S, LI T, HAN Z, et al.Oscillation theorems for second-order quasilinear neutral functional differential equations[J].Abstract and Applied Analysis,2012,2012:1-17.
[8] LI T, ROGOVCHENKO Y V.Oscillation theorems for second-order nonlinear neutral delay differential equations[J].Abstract and Applied Analysis,2014,2014:1-5.
[9] YANG J S, QIN X W.Oscillation criteria for certain second-order Emden-Fowler delay functional dynamic equations with damping on time scales[J].Advances in Difference Equations,2015(1):1-16.
[10] 黄记洲,符策红.广义Emden-Fowler方程的振动性[J].应用数学学报,2015,38(6):1126-1135.
[11] 杨甲山.具非线性中立项的二阶变时滞微分方程的振荡性[J].华东师范大学学报(自然科学版),2016,2016(4):30-37.
[12] 杨甲山,覃桂茳.一类二阶微分方程新的Kamenev型振动准则[J].浙江大学学报(理学版),2017,44(3):274-280.
[13] 杨甲山.二阶Emden-Fowler非线性变时滞微分方程的振荡准则[J].浙江大学学报(理学版),2017,44(2):144-149+160.
[14] 杨甲山,覃学文.具阻尼项的高阶Emden-Fowler型泛函微分方程的振荡性[J].中山大学学报(自然科学版),2015,54(4):63-68.
[15] SUN Y G, MENG F W.Note on the paper of Dzurina and Stavroulakis[J].Appl Math Comput,2006,174(2):1634-1641.
[16] 杨甲山,方彬.二阶广义Emden-Fowler型微分方程的振荡性[J].华中师范大学学报(自然科学版),2016,50(6):799-804.
[17] 杨甲山.一类具有非线性中立项的二阶微分方程振动性[J].东北师大学报(自然科学版),2017,49(3):13-17.

相似文献/References:

[1]王长有.一类含扩散项的时滞偏生态模型解的振动性[J].四川师范大学学报(自然科学版),2008,(02):168.
 WANG Changyou.Oscillation of Solutions of a Partial Population Equation with D iffusion and Delay[J].Journal of SichuanNormal University,2008,(05):168.
[2]张晓建,刘兴元.非线性二阶中立型差分方程解的振动性[J].四川师范大学学报(自然科学版),2008,(02):176.
 ZHANG X iaojian,LIU X ingyuan.Vibration of Solutions to the Nonlinear Second OrderNeutralD ifference Equations[J].Journal of SichuanNormal University,2008,(05):176.

备注/Memo

备注/Memo:
收稿日期:2018-02-01 接受日期:2019-03-08
基金项目: 国家自然科学基金(61561008)、广西自然科学基金(2014GXNSFBB118005)和广西高校科研资助项目(ZD2014124)
*通信作者简介:冀占江(1985—),男,讲师,主要从事微分方程定性理论的研究,E-mail:1395954261@qq.com
更新日期/Last Update: 2019-07-15