[1]赵 敏,陈文霞*.基于微分方程的谣言传播模型建立与分析[J].四川师范大学学报(自然科学版),2019,(05):626-632.[doi:10.3969/j.issn.1001-8395.2019.05.009]
 ZHAO Min,CHEN Wenxia.Establishment and Analysis of a Rumor Propagation Model Based on Differential Equations[J].Journal of SichuanNormal University,2019,(05):626-632.[doi:10.3969/j.issn.1001-8395.2019.05.009]
点击复制

基于微分方程的谣言传播模型建立与分析()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2019年05期
页码:
626-632
栏目:
基础理论
出版日期:
2019-07-15

文章信息/Info

Title:
Establishment and Analysis of a Rumor Propagation Model Based on Differential Equations
文章编号:
1001-8395(2019)05-0626-07
作者:
赵 敏 陈文霞*
江苏大学 理学院, 江苏 镇江 212013
Author(s):
ZHAO Min CHEN Wenxia
School of Science, Jiangsu University, Zhenjiang 212013, Jiangsu
关键词:
谣言传播 微分方程 平衡点 稳定性 Lyapunov函数
Keywords:
rumor spread differential equation equilibrium point stability Lyapunov function
分类号:
O175
DOI:
10.3969/j.issn.1001-8395.2019.05.009
文献标志码:
A
摘要:
谣言的传播与控制已引起学术界和管理部门的高度重视.考虑谣言传播过程中官方媒体宣传对谣言易感者的影响,将谣言易感者分成两类,建立了一类新的谣言传播微分方程模型.根据Hurwitz判据、基本再生数、Lyapunov函数和LaSalle不变原理,分析模型各类平衡点的稳定性.数值试验说明了理论成果的正确性.研究结果表明,媒体宣传报道不仅能降低谣言感染率,而且还能扩大谣言易感者和传播者转化为不信谣不传谣者的数量,最终降低谣言传播对社会造成的危害.此外,适度的媒体宣传报道有助于谣言由大范围扩散向迅速消失转移趋势.
Abstract:
The spread and control of rumors has attracted the attention of academic and management departments.Considering the influence of official media propaganda on the susceptible persons of rumor in the process of rumor dissemination, the rumor susceptible people are divided into two categories.According to the different nature of the two types of people, a new rumor prepagation model is formulated.By using Hurwitz criterion, Lyapunov function and LaSalle invariance principle, sufficient conditions of stability are obtained and carried out by numerical simulation.Media coverage can not only reduce the rate of rumor infection, but also expand the number of rumor mongering and disseminators and reduce the harm caused by rumors to society.In addition, moderate media coverage can change the rumor from widespread to rapid disappearance.

参考文献/References:

[1] LANDAU H G, RAPOPORT A.Contribution to the mathematical theory of contagion and spread of information I, spread through a thoroughly mixed population[J].Bulletin of Mathematical Biology,1953,15(1):129-165.
[2] DALEY D J, KENDALL D G.Epidemics and rumor[J].Nature,1964,204(4963):1118-11183.
[3] MAKI D P, THOMPSON M.Mathematical Models and Applications[M].New Jersey:Prentice-Hall,1973.
[4] ZANETTE D H.Criticality behavior of propagation on small-world networks[J].Phys Rev,2001,E64(1):0505010-0505015.
[5] MORENO Y, NEKOVEE M, PACHECO A F.Dynamics of rumor spreading complex networks[J].Phys Rev,2004,E69(6):006130-006137.
[6] NEKOVEE M, MORENO Y, BIANCONI G, et al.Theory of rumor spreading in complex networks[J].Physica,2008,A374(1):457-470.
[7] 张芳,司光亚,罗批.谣言传播模型研究综述[J].复杂系统与复杂性科学,2009,6(4):1-11.
[8] 顾亦然,夏玲玲.在线社交网络谣言的传播与抑制[J].物理学报,2012,61(23):000544-550.
[9] 余莎莎,王友国,朱亮.基于SIR社交网络中商业谣言传播研究[J].计算机技术与发展,2016,26(11):195-199.
[10] ZHAO H Y, ZHU L H.Dynamic analysis of a reaction-diffusion rumor propagation model[J].International J Bifurcation and Chaos,2016,6(26):1650101-1650111.
[11] ZHU L, WANG Y G.Rumor spreading model with noise interference in complex social networks[J].Physica,2017,A469(1):750-760.
[12] LIU Q M, LI T, SUN M.The analysis of an SEIR rumor propagation model on heterogeneous network[J].Physica,2017,A469(1):372-380.
[13] 樊重俊,王宇莎,霍良安,等.基于Holling-Ⅱ功能反应函数的谣言传播模型[J].系统管理学报,2017(1):71-77.
[14] 梁新媛,万佑红.媒体介入下的谣言传播模型及其控制策略[J].南京邮电大学学报(自然科学版),2017,37(1):120-126.
[15] 赵洪涌,朱霖河.社交网络中谣言传播动力学研究[J].南京航空航天大学学报,2015,47(3):332-342.
[16] 陈颖,陈玉霞.新型城镇化进程中的网络舆论危机与治理研究[J].四川师范大学学报(自然科学版),2018,45(3):160-167.

相似文献/References:

[1]陈璟.非线性二阶微分方程解的振动性[J].四川师范大学学报(自然科学版),2005,(05):560.
 CHEN Jing(Department of Mathematics and Computer Science,Liuzhou Teachers College,Liuzhou 00,et al.[J].Journal of SichuanNormal University,2005,(05):560.
[2]谢茂森,张文科.与微分方程有关的一些新的不等式[J].四川师范大学学报(自然科学版),2004,(04):351.
 XIE Mao-sen~,ZHANG Wen-ke~ (. Department of Computer Science,Daxian Teachers College,et al.[J].Journal of SichuanNormal University,2004,(05):351.
[3]张飞龙,封汉颍.一类振荡电路的微分方程分析法及其改进电路[J].四川师范大学学报(自然科学版),2003,(05):543.
 ZHANG Fei long,FENG Han ying (Department of Basic Courses,Ordnance Engineering College,et al.[J].Journal of SichuanNormal University,2003,(05):543.
[4]刘俊.一类三阶非自治微分方程解的渐近性态[J].四川师范大学学报(自然科学版),2000,(02):138.
 LIU Jun [WTBX](Department of Mathematics,Qujing Teachers College,Qujing 000,et al.[J].Journal of SichuanNormal University,2000,(05):138.
[5]李洁坤.一类非线性高阶微分方程解的振动性[J].四川师范大学学报(自然科学版),2001,(04):353.
 WTBZ]LI Jie kun [WTBX](Department of Mathematics,Liuzhou Teachers College,Liuzhou 00,et al.[J].Journal of SichuanNormal University,2001,(05):353.

备注/Memo

备注/Memo:
收稿日期:2018-03-30 接受日期:2018-05-02
基金项目:国家自然科学基金(11501253)
*通信作者简介:陈文霞(1979—),女,教授,主要从事偏微分方程的研究,E-mail:chenwx@ujs.edu.cn
更新日期/Last Update: 2019-07-15