[1]周钰谦,范飞廷,刘 倩.(2+1)维广义耗散Ablowitz-Kaup-Newell-Segur方程的行波解分岔[J].四川师范大学学报(自然科学版),2019,(05):647-653.[doi:10.3969/j.issn.1001-8395.2019.05.012]
 ZHOU Yuqian,FAN Feiting,LIU Qian.Bifurcation of Traveling Wave Solutions for the(2+1)-Dimensional Generalized Dissipative Ablowitz-Kaup-Newell-Segur Equation[J].Journal of SichuanNormal University,2019,(05):647-653.[doi:10.3969/j.issn.1001-8395.2019.05.012]
点击复制

(2+1)维广义耗散Ablowitz-Kaup-Newell-Segur方程的行波解分岔()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2019年05期
页码:
647-653
栏目:
基础理论
出版日期:
2019-07-15

文章信息/Info

Title:
Bifurcation of Traveling Wave Solutions for the(2+1)-Dimensional Generalized Dissipative Ablowitz-Kaup-Newell-Segur Equation
文章编号:
1001-8395(2019)05-0647-07
作者:
周钰谦12 范飞廷2 刘 倩3
1.电子科技大学 数学科学学院, 四川 成都 611731; 2.成都信息工程大学 应用数学学院, 四川 成都 610225; 3.西南民族大学 计算机科学与技术学院, 四川 成都 610041
Author(s):
ZHOU Yuqian12 FAN Feiting2 LIU Qian3
1.School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan; 2.College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225, Sichuan; 3.School of Computer Science a
关键词:
(2+1)维广义耗散Ablowitz-Kaup-Newell-Segur方程 行波解 动力系统 分岔
Keywords:
(2+1)-dimensional generalized dissipative Ablowitz-Kaup-Newell-Segur equation traveling wave solutions dynamical system bifurcation
分类号:
O175.2
DOI:
10.3969/j.issn.1001-8395.2019.05.012
文献标志码:
A
摘要:
利用动力系统的分岔方法研究(2+1)维广义耗散Ablowitz-Kaup-Newell-Segur方程.通过定性分析,获得该方程的行波系统在不同参数条件下的相图.然后根据对相图中所有有界轨道的讨论,再通过计算复杂的椭圆积分,最终获得(2+1)维广义耗散AKNS方程的3类有界行波解的精确表达式.
Abstract:
This paper employs the bifurcation method of dynamical system to study the(2+1)-dimensional generalized dissipative Ablowitz-Kaup-Newell-Segur equation.By qualitative analysis, phase portraits of the dynamic system corresponding to the equation are derived under different parameter conditions.Finally, according to the discussion of all bounded orbits in the obtained phase portraits, the exact expressions of three types of bounded traveling wave solutions for the(2+1)-dimensional generalized dissipative AKNS equation are given by the calculation of complex elliptic integrals.

参考文献/References:

[1] ZAKHAROV V E, SHABAT A B.Exact theory of two-dimensional self-focussing and of one-dimensional self-modulation of waves in nonlinear media[J].Soviet Phys Jetp,1972,34(1):62-29.
[2] ABLOWITZ M J, KAUP D J, NEWELL A C, et al.Nonlinear evolution equations of physical significance[J].Phys Rev Lett,1973,31(2):125.
[3] ABLOWITZ M J, KAUP D J, NEWELL A C, et al.The inverse scattering transform-Fourier analysis for nonlinear problems[J].Stud Appl Math,1974,53(4):249-315.
[4] ZAKHAROV V E, SHABAT A B.A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem I[J].Func Anal Appl,1974,8(3):226-235.
[5] ROGERS C, SCHIEF W K.Bäcklund and Darboux Transformations:Geometry and Modern Applications in Soliton Theory[M].Cambrige:Cambrige University Press,2002.
[6] MATVEEV V B, SALLE A M.Darboux Transformations and Solitons[M].Berlin:Springer-Verlag,1991.
[7] BRUZóN M S, GANDARIAS M L, MURIEL C, et al.Traveling wave solutions of the Schwarz-Korteweg-de Vries equation in(2+1)-dimensions and the Ablowitz-Kaup-Newell-Segur equation through symmetry reductions[J].Theory Math Phys,2003,137(1):1378-1389.
[8] TAHAMI M, NAJAFI M, ARABABI S, et al.Further improved EHTA and new soliton solutions to generalized dissipative(2+1)-dimensional AKNS equation[J].Int J Mod Math Sci,2013,8(1):67-81.
[9] LIU Q, ZHANG W G.Exact travelling wave solutions for the dissipative(2+1)-dimensional AKNS equation[J].Appl Math Comput,2010,217(2):735-744.
[10] ÖZER T.New traveling wave solutions to AKNS and SKdV equations[J].Chaos Soliton Fract,2009,42(1):577-583.
[11] WAZWAZ A M.n-soliton solutions for shallow water waves equations in(1+1)and(2+1)dimensions[J].Appl Math Comput,2011,217(21):8840-8845.
[12] NAJAFI M, DARVISHI M T.New exact solutions to the(2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation:modification of the extended homoclinic test approach[J].Chinese Phys Lett,2012,29(4):040202.
[13] LIU N, LIU X Q.Application of the binary Bell polynomials method to the dissipative(2+1)-dimensional AKNS equation[J].Chinese Phys Lett,2012,29(12):120201.
[14] HELAL M A, SEADAWY A R, ZEKRY M H.Stability analysis solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave equation[J].Appl Math Sci,2013,7(68):3355-3365.
[15] ARBABI S, NAJAFI M.New soliton solutions of dissipative(2+ 1)-dimensional AKNS equation[J].Int J Adv Math Sci,2013,1(2):98-103.
[16] CHENG Z L, HAO X H.The periodic wave solutions for a(2+1)-dimensional AKNS equation[J].Appl Math Comput,2014,234:118-126.
[17] GÜNER Ö, BEKIR A, KARACA F.Optical soliton solutions of nonlinear evolution equations using ansatz method[J].Optik,2016,127(1):131-134.
[18] ALI A, SEADAWY A R, LU D C.New solitary wave solutions of some nonlinear models and their applications[J].Adv Difference Eqns,2018,2018(1):232.
[19] ALI A, SEADAWY A R, LU D C.Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz-Kaup-Newell-Segur water wave dynamical equation via two methods and its applications[J].Open Phys,2018,16(1):219-226.
[20] KATZENGRUBER B, KRUPA M, SZMOLYAN P.Bifurcation of traveling waves in extrinsic semiconductors[J].Physica,2000,D144(1/2):1-19.
[21] LIU Z R, TANG H.Explicit periodic wave solutions and their bifurcations for generalized Camassa-Holm equation[J].Int J Bifurcat Chaos,2010,20(8):2507-2519.
[22] LI J B.Bifurcation and exact travelling wave solutions of the generalized two-component hunter-saxton system[J].Discrete Cont Dyn,2014,B19(6):1719-1729.
[23] LI J B, CHEN F J.Exact traveling wave solutions and bifurcations of the dual Ito equation[J].Nonlinear Dynam,2015,82(3):1537-1550.
[24] ZHOU Y Q, LIU Q.Reduction and bifurcation of traveling waves of the KdV-Burgers-Kuramoto equation[J].Discrete Cont Dyn,2016,B21(6):2057-2071.
[25] GUCKENHEIMER J, HOLMES P.Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields[M].New York:Springer-Verlag,1982.
[26] 张芷芬,丁同仁,黄文灶,等.微分方程定性理论[M].北京:科学出版社,1985.

相似文献/References:

[1]苗宝军,李鹏,申建伟.一类复合BurgersKortewegde Vries方程的行波解和稳定性分析一类复合BurgersKortewegde Vries方程的行波解和稳定性分析[J].四川师范大学学报(自然科学版),2009,(05):602.
 MIAO Bao jun,LI Peng,SHEN Jian wei.Stability Analysis and Traveling Wave Solutions of a CompoundBurgersKortewegde Vries Equation[J].Journal of SichuanNormal University,2009,(05):602.
[2]马志民,孙峪怀*,孙 阳,等.广义变系数Gardner方程新的精确解[J].四川师范大学学报(自然科学版),2012,(04):435.
 MA Zhi-min,SUN Yu-huai,SUN Yang,et al.The New Explicit Solutions of the Gardner Equationwith Generalized Variable Coefficient[J].Journal of SichuanNormal University,2012,(05):435.
[3]马志民,孙峪怀.修改的(G′/G)-展开方法与 Sharma-Tasso-Olver方程的行波解[J].四川师范大学学报(自然科学版),2014,(04):473.
 MA Zhimin,SUN Yuhuai.The Modified (G′/G)expansion Method and the Travelling Solutions for the SharmaTassoOlver Equation[J].Journal of SichuanNormal University,2014,(05):473.
[4]周钰谦,吴曦,张健.一类反应扩散方程的新精确解[J].四川师范大学学报(自然科学版),2003,(05):448.
 ZHOU Yu qian,WU Xi,ZHANG Jian (. College of Mathematics and Software Science,et al.[J].Journal of SichuanNormal University,2003,(05):448.
[5]吴曦.一类非线性波动方程的行波解[J].四川师范大学学报(自然科学版),2003,(06):589.
 WU Xi (Department of Economic Mathematics,Southwest University of Finance and Economics,Chengdu 007,et al.[J].Journal of SichuanNormal University,2003,(05):589.
[6]孙峪怀.广义KDV方程的显示行波解[J].四川师范大学学报(自然科学版),2001,(04):339.
 WTBZ]SUN Yu huai [WTBX](Department of Mathematics,Sichuan Normal University,Chengdu 00,et al.[J].Journal of SichuanNormal University,2001,(05):339.
[7]秦渝.一类非线性退缩扩散方程解的渐近状态[J].四川师范大学学报(自然科学版),1986,(02):0.
[8]王小娇,谢莹莹,汪大召,等.一类广义KdV方程的行波解[J].四川师范大学学报(自然科学版),2017,(05):600.[doi:10.3969/j.issn.1001-8395.2017.05.006]
 WANG Xiaojiao,XIE Yingying,WANG Dazhao,et al.Travelling Wave Solution of the Generalized KdV Equation[J].Journal of SichuanNormal University,2017,(05):600.[doi:10.3969/j.issn.1001-8395.2017.05.006]

备注/Memo

备注/Memo:
收稿日期: 2018-09-05 接受日期:2019-03-07
基金项目:国家自然科学基金(11301043和11701480)、中国博士后科学基金(2016M602663)和四川省教育厅创新项目(15TD0050)
第一作者简介:周钰谦(1979—),男,教授,主要从事微分方程与动力系统的研究,E-mail:cs97zyq@aliyun.com
更新日期/Last Update: 2019-07-15