[1]章 超,蔡红艳*.Belitskii约化与三阶矩阵对的标准形[J].四川师范大学学报(自然科学版),2019,(05):659-666.[doi:10.3969/j.issn.1001-8395.2019.05.014]
 ZHANG Chao,CAI Hongyan.Belitskii's Reduction and Standard Form of Matrix Pairs[J].Journal of SichuanNormal University,2019,(05):659-666.[doi:10.3969/j.issn.1001-8395.2019.05.014]
点击复制

Belitskii约化与三阶矩阵对的标准形()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2019年05期
页码:
659-666
栏目:
基础理论
出版日期:
2019-07-15

文章信息/Info

Title:
Belitskii's Reduction and Standard Form of Matrix Pairs
文章编号:
1001-8395(2019)05-0659-08
作者:
章 超 蔡红艳*
贵州大学 数学与统计学院, 贵州 贵阳 550025
Author(s):
ZHANG Chao CAI Hongyan
School of Mathematics and Statistics, Guizhou University, Guiyang 550025, Guizhou
关键词:
标准形 箭图表示 动力系统 Λ-相似
Keywords:
standard form representations of quiver dynamical system milarity
分类号:
O151.2; O153.3
DOI:
10.3969/j.issn.1001-8395.2019.05.014
文献标志码:
A
摘要:
在代数表示理论中,代数Γ=k〈x,y〉在表示型的研究中具有重要的作用.主要利用Belitskii约化算法描述Γ的三维表示的同构类,等价地,给出三阶矩阵对的相似标准形的完全分类,并由此确定了此线性矩阵问题的参数数.
Abstract:
In the representation theory, the algebra Γ=〈x, y〉 plays an important role in the research of the representation type of algebras.In this paper, all the representations of Γ up to isomorphisms are described by using the Belitskii's reduction, equivalently, determine the standard form of matrix pairs of size three.As an application, we obtain the number of parameters of this linear matrix problem base on the standard form.standard form; representations of quiver; dynamical system; Λ up to isomorphisms are described by using the Belitskii's reduction, equivalently, determine the standard form of matrix pairs of size three.As an application, we obtain the number of parameters of this linear matrix problem base on the standard form.

参考文献/References:

[1] HAZEWINKEL M.Representations of quivers and moduli of linear dynamical systems[C]//Lie Groups:History Frontiers and Applications VII.Massachusetts:Math Sci Press,1977:277–289.
[2] HAN Y, LIU M L.Regular points in system spaces[J].Linear Algebra Appl,2003,365:201-213.
[3] CHEN Y, NIE L, XU Y G.Belitskii's canonical forms of linear dynamical systems[J].Linear Algebra Appl,2017,531:533-536.
[4] AUSLANDER M, REITEN I, SMALO S O.Representation Theory of Artin Algebras[M].Cambridge:Cambridge University Press,1995.
[5] GABRIEL P.Unzerlegbare Darstellungen I[J].Manuscripta Math,1972,6(1):71-103.
[6] GABRIEL P, ROITER A V.Representation of Finite Dimensional Algebras[M].Berlin:Springer-Verlag,1992.
[7] BOOS M, REINEKE M.B-orbits of 2-nilpotent matrices and generalizations[C]//Highlights in Lie Algebraic Methods.Boston:Birkhauser,2012:147-166.
[8] DROZD Y A.Tame and wild matrix problems[C]//Representation Theory II.Berlin:Springer-Verlag,1980:242-258..
[9] CRAWLEY-BOEVEY W W.On tame algebras and bocses[J].Proc London Math Soc,1988,56(3):451-483.
[10] CRAWLEY-BOEVEY W W.Matrix problems and Drozd's theorem[J].Banach Center Publications,1990,26(1):199-202.
[11] SERGEICHUK V V.Canonical matrices for basic matrix problems[J].Linear Algebra Appl,2002,317:53-102.
[12] HORN R A, JOHNSON C A.矩阵分析[M].张晓尧,张凡,译.北京:机械工业出版社,2005.
[13] 徐运阁,马晓静.矩阵对的相似标准形[J].大学数学,2008,24(1):104-107.
[14] KRAFT H, RIEDTMANN C.Geometry of representations of quivers[J].Representations of Algebras,1986,116:109-145.
[15] 刘先平,徐运阁.基于Belitskii典范形参数数的计算[J].中国科学,2018,48(7):879-892.

备注/Memo

备注/Memo:
收稿日期:2018-03-06 接受日期:2018-06-04
基金项目:国家自然科学基金(11601098)和贵州省科技厅项目(黔科合基础[2018]1021)
*通信作者简介:蔡红艳(1987—),女,讲师,主要从事运筹学与控制论的研究,E-mail:sally-chy@163.com
更新日期/Last Update: 2019-07-15