[1]梁跃均,黄多辉*.外电场作用下PbS分子结构及其特性[J].四川师范大学学报(自然科学版),2019,(05):691-696.[doi:10.3969/j.issn.1001-8395.2019.05.018]
 LIANG Yuejun,HUANG Duohui.PbS Molecular Structure and Properties Under Electric Field[J].Journal of SichuanNormal University,2019,(05):691-696.[doi:10.3969/j.issn.1001-8395.2019.05.018]
点击复制

外电场作用下PbS分子结构及其特性()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2019年05期
页码:
691-696
栏目:
基础理论
出版日期:
2019-07-15

文章信息/Info

Title:
PbS Molecular Structure and Properties Under Electric Field
文章编号:
1001-8395(2019)05-0691-06
作者:
梁跃均1 黄多辉2*
1.成都市职工大学, 四川 成都 610072; 2.宜宾学院 物理与电子工程学院, 四川 宜宾 644007
Author(s):
LIANG Yuejun1 HUANG Duohui2
1.Chengdu University of Staff, Chengdu 610072, Sichuan; 2.College of Physics and Electronic Engineering, Yibin University, Yibin 644007, Sichuan
关键词:
PbS 外电场 结构特性 激发特性
Keywords:
PbS external electric field structural properties excited properties
分类号:
O561.1
DOI:
10.3969/j.issn.1001-8395.2019.05.018
文献标志码:
A
摘要:
对S原子采用6-311+G*基组,Pb原子采用aug-cc-pVTZ-PP基组,利用密度泛函理论中的B3LYP方法研究不同强度外电场(-0.04~0.04 a.u.)下PbS分子基态的几何结构、能级、电荷布居、谐振频率和红外光谱强度及前6个激发态的激发能、吸收谱和振子强度的影响.结果表明:随着正向电场的逐渐增大,PbS基态分子的键长和红外光谱强度先减小后增大; 谐振频率、分子总能量、HOMO能量EH和LUMO能量EL先增大后减小; 能隙Eg
Abstract:
The equilibrium structure, energy level, charge distribution, harmonic frequency, infrared intensities of PbS ground state molecule and the excited state properties of first six excited states under different electric fields(from -0.04 to 0.04 a.u.)are studied by use of density functional(B3LYP)method with aug-cc-pVTZ-PP for Pb atom and 6-311+G* basis sets for S atom.The results show that the bond length and intensity of infrared are found to first decrease and then increase with positive direction electric field increasing.But the total energy, harmonic frequency, HOMO energy level EH and LUMO energy level EL are proved to first increase and then decrease.With the increase of the external field, the energy gap Eg and dipole moment are proved to decrease.The wavelengths from ground state to the first six excited states are found to increase, but the excited energies are decreasing with the increase of the external field.Meanwhile, the sequence of excited states for PbS molecule can be changed under an external field.

参考文献/References:

[1] LACHHAB M, PAPACONSTANTOPOULOS D A, MEHL M J.Electronic structure calculations of lead chalcogenides PbS, PbSe, PbTe[J].J Phys Chem Solids,2002,63(5):831-841.
[2] BOGDAN D, LAZARO A P, PRASHANT N, et al.Measurement of electronic states of PbS nanocrystal quantum dots using scanning tunneling spectroscopy:the role of parity selection rules in optical absorption[J].Phys Rev Lett,2013,110(12):127406.
[3] MCDONALD S A, KONSTANTATOS G, ZHANG S, et al.Solution processed PbS quantum dot infrared photodetectors and photovoltaics[J].Nature Materials,2005,4(2):138-142.
[4] SOUICI A H, KEGHOUCHE N, DELAIRE J A, et al.Structural and optical properties of PbS nanoparticles synthesized by the radiolytic method[J].J Phys Chem,2009,C113(19):8050-8057.
[5] TEICHMAN R A III, NIXON E R.Effects of neon matrix environment on three vibronic emission systems of PbS[J].J Molecular Spectroscopy,1977,65(2):258-263.
[6] BURTIN B, CARLEER M, COLIN R, et al.Laser-induced fluorescence of gaseous PbS[J].J Physics:Atomic Molecular Physics,1980,B13(19):3783-3795.
[7] GREENWOOD D J, BARROW R F, LINTON C.Observations on the electronic spectrum of gaseous PbS[J].J Molecular Spectroscopy,1981,86(2):480-487.
[8] GREENWOOD D J, LINTON C, BARROW R F.The electronic spectrum of gaseous SnS[J].J Molecular Spectroscopy,1981,89(1):134-144.
[9] BALASUBRAMANIAN K.Spectroscopic properties and potential energy curves for heavy p-block diatomic hydrides, halides, and chalconides[J].Chem Rev,1989,89(8):1801-1840.
[10] BALASUBRAMANIAN K.Electronic states of PbS[J].J Chem Phys,1986,85(3):1443-1446.
[11] JALBOUT A F, LI X H, ABOURACHID H.Analytical potential energy functions and theoretical spectroscopic constants for MX/MX(M=Ge,Sn,Pb; X=O,S,Se,Te,Po)and LuA(A=H,F)systems:density functional theory calculations[J].International J Quantum Chemistry,2007,107:522-539
[12] 王秋云,徐国亮,马美仲,等.外电场作用下C6H6的分子结构及其特性[J].原子与分子物理学报,2004,21(2):291-294.
[13] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al.Gaussian 03[S].Rev B.2nd.Pittsburgh PA:Gaussian Inc,2003.
[14] 令狐荣锋,徐梅,宋晓书,等.GaAs在外电场作用下的分子特性研究[J].四川师范大学学报(自然科学版),2010,33(3):343-347.
[15] 徐国亮,谢会香,袁伟,等.SiN分子外电场情况下的发光特性[J].物理学报,2012,61(4):043104.
[16] PETERSON K A.Systematically convergent basis sets with relativistic pseudopotentials I:correlation consistent basis sets for the post-d group 13~15 elements[J].J Chem Phys,2003,119(21):11099-11112.
[17] PETERSON K A, FIGGEN D, GOLL E, et al.Systematically convergent basis sets with relativistic pseudopotentials.II.small-core pseudopotentials and correlation consistent basis sets for the post-d group 16-18 elements[J].J Chem Phys,2003,119(21):11113-11123.
[18] HUBER K P, HERZBERG G.Molecular Spectra and Molecular Structure IV Constants of Diatomic Molecules[M].New York:Van Nostrand Reinhold Company,1978:528.

相似文献/References:

[1]令狐荣锋,徐梅,宋晓书,等.GaAs在外电场作用下的分子特性研究[J].四川师范大学学报(自然科学版),2010,(03):343.
 LINGHU Rong feng,XU Mei,SONG Xiao shu,et al.Study on the Molecular Properties of GaAs in the External Electric Field[J].Journal of SichuanNormal University,2010,(05):343.
[2]周 平,姜 明.TiC分子在外电场中的能量研究[J].四川师范大学学报(自然科学版),2012,(04):530.
 ZHOU Ping,JIANG Ming.Study on the Energy of TiC Molecule in the External Electric Field[J].Journal of SichuanNormal University,2012,(05):530.

备注/Memo

备注/Memo:
收稿日期:2018-07-04 接受日期:2018-10-08
基金项目:四川省教育厅科研项目(13ZA0198)
*通信作者简介:黄多辉(1980—),男,研究员,主要从事原子与分子物理的研究,E-mail:hdhzhy912@163.com
更新日期/Last Update: 2019-07-15