[1]赖学李,夏福全*.一般混合变分不等式的新间隙函数[J].四川师范大学学报(自然科学版),2019,(06):746-752.[doi:10.3969/j.issn.1001-8395.2019.06.005]
 LAI Xueli,XIA Fuquan.New Gap Functions for General Mixed Variational Inequalities[J].Journal of SichuanNormal University,2019,(06):746-752.[doi:10.3969/j.issn.1001-8395.2019.06.005]
点击复制

一般混合变分不等式的新间隙函数()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2019年06期
页码:
746-752
栏目:
基础理论
出版日期:
2019-11-04

文章信息/Info

Title:
New Gap Functions for General Mixed Variational Inequalities
文章编号:
1001-8395(2019)06-0746-07
作者:
赖学李 夏福全*
四川师范大学 数学科学学院, 四川 成都 610066
Author(s):
LAI Xueli XIA Fuquan
College of Mathematical Science, Sichuan Normal University, Chengdu 610066, Sichuan
关键词:
一般混合变分不等式 KKT条件 间隙函数
Keywords:
general mixed variational inequalities KKT condition gap function
分类号:
O176; O178
DOI:
10.3969/j.issn.1001-8395.2019.06.005
文献标志码:
A
摘要:
主要研究具有凸约束的一般混合变分不等式问题的间隙函数.首先给出间隙函数的概念,研究新间隙函数的连续性和可微性.然后利用新的间隙函数将一般混合变分不等式问题转化为具有线性近似约束的二次规划问题,并证明了目标变分不等式和具有线性近似约束的二次规划问题具有相同的解.
Abstract:
In this paper, the gap function of a general mixed variational inequality with convex constraints is studied.First, the concept of gap functions and the properties of new gap functions are given.Then we use the new gap function to transform the general mixed variational inequality problem into a quadratic programming problem with linear approximation constraints, and further into a linear quadratic constrained two degree programming problem.It is proved that the objective variational inequality and the two order programming problem with linear approximation constraints have the same solution.

参考文献/References:

[1] AUSLENDER A.Optimization:Méthodes Numé[M].Paris:Masson,1976.
[2] FUKUSHIMA M.Equivalent differentiable optimization problems and decent methods for asymmetric variational inequality problems[J].Math Program,1992,53(1/2/3):99-110.
[3] TAJI K, FUKUSHIMA M.A new merit function and a successive quadratic programming algorithm for variational inequality problems[J].SIAM J Optim,1996,6(3):704-713.
[4] FACCHINEI F, FISHER A, KANZOW C, et al.A simply constrainted optimization reformulation of KKT systems arising from variational inequalities[J].Appl Math Optim,1999,40(1):19-37.
[5] FACCHINEI F, KANZOW C, SAGRATELLA S.Solving quasi-variational inequalities via their KKT conditions[J].Math Program,2014,144(1/2):369-412.
[6] TANG G J, HUANG N J.Gap function and global error bounds for set-valued mixed variational inequalities[J].Taiwanese J Math,2013,17(4):1267-1286.
[7] SUHEL A K, CHEN J W.Gap function and global error bounds for generalized mixed quasi variational inequalities[J].Appl Math Comput,2015,260:71-81.
[8] FUKUSHIMA M.非线性最优化基础[M].林贵华,译.北京:科学出版社,2011.
[9] HOGAN W.Point-to-set maps in mathematical programming[J].SIAM Review,1973,15(3):591-603.
[10] HOGAN W.Directional derivatives for extremal-value functions with applications to the completely convex case[J].Oper Res,1973,21(1):187-209.
[11] SLODOV M V.Merit function and error bounds for generalized variational inequalities[J].J Optim Theor Appl,2003,287:405-414.
[12] FIACCOA A V, MCCORMICK G P.Nonlinear programming:sequential unconstrained minimization techniques[C]//Philadelphia:SIAM,1990.
[13] BAZARAA M S, SHETTY C M.Foundations of Optimization[M].Berlin, Heidelberg:Springer-Verlag,1976.
[14] HARKER P T, PANG J S.Finite-dimensional variational inequality and nonlinear comlementarity problems:A suervey of theory, algorithms and applications[J].Math Progamming,1990,48:161-220.
[15] 胡艳红,赵张超.集值变分不等式的广义间隙函数和误差界[J].哈尔滨师范大学学报(自然科学版),2016,32(4):5-7.
[16] QU F.A Brief Lecture Notes Optimization for Microeconomic Analysis[M].上海:复旦大学出版社,2003.
[17] HANKER P T.A globally convergent method for nonlinear progamming[J].J Optim Theor Appl,1977,22:297-309.
[18] LARSSON T, PATRIKSSON M.A class of gap fuction for variational inequalities[J].Math Program,1994,64:53-79.

相似文献/References:

[1]熊廷见.关于一般混合变分不等式的g-单调迭代算法[J].四川师范大学学报(自然科学版),2000,(01):17.
 XIONG Ting jian (Department of Mathematics,Zigong Teachers College,Zigong 000,et al.[J].Journal of SichuanNormal University,2000,(06):17.

备注/Memo

备注/Memo:
收稿日期:2018-03-14 接受日期:2018-04-17 基金项目:教育部科学技术重点项目(212147) *通信作者简介:夏福全(1973—),男,教授,博导,主要从事最优化理论及其算法的研究,E-mail:fuquanxia@163.com
更新日期/Last Update: 2019-11-04