[1]李 琴,陈光淦*,杨 敏.关于乘性噪声驱动的随机动力系统的中心流形的逼近[J].四川师范大学学报(自然科学版),2019,(06):758-762.[doi:10.3969/j.issn.1001-8395.2019.06.007]
 LI Qin,CHEN Guanggan,YANG Min.Approximation of Centre Manifolds for Multiplicative Noise Driven Stochastic Dynamical Systems[J].Journal of SichuanNormal University,2019,(06):758-762.[doi:10.3969/j.issn.1001-8395.2019.06.007]
点击复制

关于乘性噪声驱动的随机动力系统的中心流形的逼近()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2019年06期
页码:
758-762
栏目:
基础理论
出版日期:
2019-11-04

文章信息/Info

Title:
Approximation of Centre Manifolds for Multiplicative Noise Driven Stochastic Dynamical Systems
文章编号:
1001-8395(2019)06-0758-05
作者:
李 琴 陈光淦* 杨 敏
四川师范大学 数学科学学院, 四川 成都 610066
Author(s):
LI Qin CHEN Guanggan YANG Min
College of Mathematical Science, Sichuan Normal University, Chengdu 610066, Sichuan
关键词:
Wong-Zakai型逼近 随机动力系统 中心流形 乘性噪声
Keywords:
Wong-Zakai type approximation stochastic dynamical systems centre manifold multiplicative noise
分类号:
O175.2; O193
DOI:
10.3969/j.issn.1001-8395.2019.06.007
文献标志码:
A
摘要:
研究一类带乘性噪声驱动的随机发展方程的中心流形的Wong-Zakai型逼近,基于不变流形下解的收敛,用带光滑噪声的随机系统的中心流形去逼近原系统的中心流形,从而使得原随机系统的动力行为更清晰易见.
Abstract:
In this paper, we study the Wong-Zakai type approximation of the centre manifold for a class of stochastic evolution equations driven by multiplicative noise.Based on the convergence of solutions on invariant manifolds, the centre manifold of a stochastic system with smooth noise is used to approximate the centre manifold of the original system.So that the dynamic behavior of the original stochastic system is more clear.

参考文献/References:

[1] MOHAMMED S E A, SCHEUTZOW M K R.The stable manifold theorem for stochastic differential equations[J].Ann Probab,1999,27(2):615-652.
[2] BOXLER P.Elimination of Fast Variables in the Presence of Noise:Stochastic Center Manifold Theory[M].New Jersey:World Sci Publ,1988:671-684.
[3] CHEN X, ROBERTS J, DUAN J.Centre manifolds for stochastic evolution equations[J].J Dynam Diff Eqns,2015,21(7):606-632.
[4] DUAN J, LU K, SCHMALFUSS B.Smooth stable and unstable manifolds for stochastic evolutionary equations[J].J Dynam Diff Eqns,2004,16(4):949-972.
[5] WONG E, ZAKA I.On the relation between ordinary and stochastic differential equations[J].Internat J Engrg Sci,1965,3(2):213-229.
[6] WONG E, ZAKA I.On the convergence of ordinary integrals to stochastic integrals[J].Ann Math Statist,1965,36(5):1560-1564.
[7] ACQISTAPACE P, TERRENI B.An approach to Ito linear equations in Hilbert spaces by approximation of white noise with coloured noise[J].Stochastic Anal Appl,1984,2(2):131-186.
[8] SHEN J, LU K.Wong-Zakai approximations and center manifolds of stochastic differential equations[J].J Dynam Diff Eqns,2017,263(8):4929-4977.
[9] JIANG T, LIU X, DUAN J.Approximation for random stable manifolds under multiplicative correlated noises[J].Discrete Contin Dyn Syst Ser,2016,21(9):3163-3174.
[10] DUAN J, LU K, SCHMALFUSS B.Invariant manifolds for stochastic partial differential equations[J].Ann Probab,2003,31(4):2109-2135.
[11] VANDERBAUWHEDE A, IOOSS G.Center Manifold Theory in Infinite Dimensions[M].Berlin:Springer-Verlag,1992:125-163.
[12] TESSITORE G, ZABCZYK J.Wong-Zakai approximation of stochastic evolution equations[J].J Evol Eqns,2006,6(4):621-655.
[13] ARNOLD L.Random Dynamical Systems[M].Berlin:Springer-Verlag,1998.
[14] KONECNY F.On Wong-Zakai approximation of stochastic differential equations[J].Multivariate Anal,1983,13(4):605-611.
[15] MILLET A M, Sanz S.The support of the solution to a hyperbolic SPDE,probab[J].Theory Related Fields,1994,98(3):361-387.
[16] PETTERSSON R.Wong-Zakai approximations for reflecting stochastic differential equations[J].Stochastic Anal Appl,1999,17(4):609-617.

相似文献/References:

[1]杜先云,陈炜.具有可加噪声的耗散KdV型方程的随机吸引子[J].四川师范大学学报(自然科学版),2012,(05):651.
 DU Xian yun,CHEN Wei.Random Attractors of Dissipative KdV Type Equation with Additive Noise[J].Journal of SichuanNormal University,2012,(06):651.
[2]鲍杰,舒级.高阶广义2D Ginzburg-Landau方程的随机吸引子[J].四川师范大学学报(自然科学版),2014,(03):298.
 BAO Jie,SHU Ji.Random Attractor for the Generalized 2D StochasticHigherOrder GinzburgLandau Equation[J].Journal of SichuanNormal University,2014,(06):298.
[3]张元元,陈光淦*.带Robin边界条件的2维随机Ginzburg-Landau方程的吸引子[J].四川师范大学学报(自然科学版),2015,(01):20.
 ZHANG Yuanyuan,CHEN Guanggan.Random Attractor for the 2-Dimensional Stochastic Ginzburg-Landau Equation with Robin Boundary Data[J].Journal of SichuanNormal University,2015,(06):20.
[4]张 佳,舒 级*,董 建,等.具乘性噪声的广义Ginzburg-Landau方程的随机吸引子[J].四川师范大学学报(自然科学版),2015,(05):638.[doi:10.3969/j.issn.1001-8395.2015.05.002]
 ZHANG Jia,SHU Ji,DONG Jian,et al.Random Attractor of Generalized Ginzburg-Landau Equation with Multiplicative Noise[J].Journal of SichuanNormal University,2015,(06):638.[doi:10.3969/j.issn.1001-8395.2015.05.002]
[5]詹勇,何平,周吉.关于随机动力系统的Julia集[J].四川师范大学学报(自然科学版),1999,(02):32.
 Zhan Yong ) He Ping ) Zhou Ji ) ( ) Mianyang Commercial College,Mianyang 000,Sichuan,et al.[J].Journal of SichuanNormal University,1999,(06):32.
[6]杨 袁,舒 级*,王云肖,等.带乘性噪声的广义2D Ginzburg-Landau方程的渐近行为[J].四川师范大学学报(自然科学版),2017,(02):143.[doi:10.3969/j.issn.1001-8395.2017.02.001]
 YANG Yuan,SHU Ji,WANG Yunxiao,et al.The Asymptotic Behavior of the Generalized 2D Ginzburg-Landau Equation with Multiplicative Noise[J].Journal of SichuanNormal University,2017,(06):143.[doi:10.3969/j.issn.1001-8395.2017.02.001]
[7]王云肖,舒 级*,杨 袁,等.带加性噪声的分数阶随机Ginzburg-Landau方程的渐近行为[J].四川师范大学学报(自然科学版),2017,(02):149.[doi:10.3969/j.issn.1001-8395.2017.02.002]
 WANG Yunxiao,SHU JI,YANG Yuan,et al.Asymptotic Behavior of the 2D Generalized Fractional Stochastic Ginzburg-Landau Equation with Additive Noise[J].Journal of SichuanNormal University,2017,(06):149.[doi:10.3969/j.issn.1001-8395.2017.02.002]
[8]王云肖,舒 级*,杨 袁,等.带乘性噪声的随机分数阶Ginzburg-Landau方程的渐近行为[J].四川师范大学学报(自然科学版),2018,(05):591.[doi:10.3969/j.issn.1001-8395.2018.05.004]
 WANG Yunxiao,SHU JI,YANG Yuan,et al.Asymptotic Behavior of the Stochastic Fractional Ginzburg-Landau Equation with Multiplicative Noise[J].Journal of SichuanNormal University,2018,(06):591.[doi:10.3969/j.issn.1001-8395.2018.05.004]
[9]文慧霞,舒 级*,李林芳.一类非自治随机波动方程的随机吸引子[J].四川师范大学学报(自然科学版),2019,(02):168.[doi:10.3969/j.issn.1001-8395.2019.02.004]
 WEN Huixia,SHU Ji,LI Linfang.The Random Attractors of a Class of Non-autonomous Stochastic Wave Equations[J].Journal of SichuanNormal University,2019,(06):168.[doi:10.3969/j.issn.1001-8395.2019.02.004]
[10]王云肖,舒 级*,杨 袁,等.加权空间中带乘性噪声的随机分数阶非自治Ginzburg-Landau方程[J].四川师范大学学报(自然科学版),2019,(04):491.[doi:10.3969/j.issn.1001-8395.2019.04.009]
 WANG Yunxiao,SHU Ji,YANG Yuan,et al.Stochastic Fractional Non-autonomous Ginzburg-Landau Equations with Multiplicative Noise in Weighted Space[J].Journal of SichuanNormal University,2019,(06):491.[doi:10.3969/j.issn.1001-8395.2019.04.009]

备注/Memo

备注/Memo:
收稿日期:2018-09-20 接受日期:2018-10-24 基金项目:国家自然科学基金(11571245)和四川省科技厅应用基础项目(2018JY0486) *通信作者简介:陈光淦(1978—),男,教授,主要从事随机偏微分方程的研究,E-mail:chenguanggan@sicnu.edu.cn
更新日期/Last Update: 2019-11-04