[1]郭庆栋,周 疆*.双线性分数次极大算子的交换子在Multi-Morrey空间上的紧性[J].四川师范大学学报(自然科学版),2019,(06):779-783.[doi:10.3969/j.issn.1001-8395.2019.06.010]
 GUO Qingdong,ZHOU Jiang.The Compactness of Commutators of Bilinear Fractional Maximal Operators on Multi-Morrey Spaces[J].Journal of SichuanNormal University,2019,(06):779-783.[doi:10.3969/j.issn.1001-8395.2019.06.010]
点击复制

双线性分数次极大算子的交换子在Multi-Morrey空间上的紧性()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2019年06期
页码:
779-783
栏目:
基础理论
出版日期:
2019-11-04

文章信息/Info

Title:
The Compactness of Commutators of Bilinear Fractional Maximal Operators on Multi-Morrey Spaces
文章编号:
1001-8395(2019)06-0779-07
作者:
郭庆栋 周 疆*
新疆大学 数学与系统科学学院, 新疆 乌鲁木齐 830046
Author(s):
GUO Qingdong ZHOU Jiang
College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, Xinjiang
关键词:
交换子 紧性 分数次极大算子 Morrey空间
Keywords:
commutators compactness fractional maximal operators Morrey spaces
分类号:
O174.2
DOI:
10.3969/j.issn.1001-8395.2019.06.010
文献标志码:
A
摘要:
定义Mα为双线性分数次极大算子以及令b=(b1,b2)是一个局部可积函数集合,得到双线性分数次极大算子与CMO(Cc在BMO范数下的闭包)函数生成的交换子是Morrey空间到Multi-Morrey空间的紧算子,其中交换子包括分数次极大线性交换子Mα,b和分数次极大迭代交换子Mα,Πb,且得到的结论在单线性时也是新的结果.
Abstract:
Denote be the bilinear fractional maximal operators by Mα and let b=(b1,b2) be a collection of locally integrable functions.In this paper, we obtain that the commutators generated by the bilinear fractional maximal operators and the CMO(Cc closure under the BMO norm)functions are compact operators from the Morrey spaces to the Multi-Morrey spaces, where the commutators include the fractional maximal linear commutators Mα,∑b and fractional maximal iterator commutators Mα,∏b and fractional maximal iterator commutators he conclusion of this paper is also new when the operators are linear.

参考文献/References:

[1] ZHANG P, WU J.Commutators of the fractional maximal functions[J].Acta Math Sin,2009,52(6):1235-1238.
[2] ZHANG P, WU J.Commutators of the fractional maximal function on variable exponent Lebesgue spaces[J].Czechoslovak Math J,2014,64(1):183-197.
[3] GULIYEV V S, SHUKUROV P S.On the boundedness of the fractional maximal operator, Riesz potential and their commutators in generalized Morrey spaces[J].Operator Theory:Adv Appl,2013,229:175-194.
[4] COIFMAN R, MEYER Y.Au Dela Des Operateurs Pseudo-differentiels[M].Paris:Societe Mathematique de France,1978:57.
[5] GRAFAKOS L, TORRES R H.Multilinear Calderón-Zygmund theory[J].Adv In Math,2002,165(1):124-164.
[6] CAO M, XUE Q, YABUTA K.On the boundedness of multilinear fractional strong maximal operator with multiple weights[J/OL].https://arxiv.org/abs/1512.08681,2015.
[7] GURBUZ F.Multilinear BMO estimates for the commutators of multilinear fractional maximal and integral operators on the product generalized Morrey spaces[J].Int J Anal App,2019,17(4):596-619.
[8] UCHIYAMA A.On the compactness of operators of Hankel type[J].Tohoku Math J,1978,30(1):163-171.
[9] WANG S.The compactness of the commutators of fractional integral operator(in Chinese)[J].Chin Ann Math,1987,A8:475-482.
[10] CHEN J, HU G.Compact commutators of rough singular integral operators[J].Canad Math Bull,2015,58(1):1-11.
[11] WANG D, ZHOU J, TENG Z.Boundedness and compactness of commutator of Hardy-Littlewood maximal operator[J].Anal Math,2019,in press.
[12] 胡喜,周疆.多线性分数次积分算子在广义Morrey空间上的精确估计[J].四川师范大学学报(自然科学版),2018,41(5):602-606.
[13] 赵蕾,邓宇龙.次线性算子的多线性交换子在齐型Morrey空间上的有界性[J].四川师范大学学报(自然科学版),2014,37(6):820-823.
[14] 周盼,周疆.多线性分数次积分算子在Morrey型空间上新的端点估计[J].西南大学学报(自然科学版),2017,39(12):74-80.
[15] IIDA T.Sharp bounds for multilinear fractional integral operators on Morrey type spaces[J].Positivity,2012,16(2):339-358.
[16] DING Y, MEI T.Boundedness and compactness for the commutators of bilinear operators on morrey spaces[J].Potential Anal,2015,42(3):717-748.
[17] CHEN Y, DING Y, WANG X.Compactness of commutators for singular integrals on morrey spaces[J].Canad J Math,2012,64:257-281.

相似文献/References:

[1]吴世旭.有界核参数型Marcinkiewicz积分交换子的端点估计[J].四川师范大学学报(自然科学版),2009,(02):179.
 WU Shixu.EndpointEstimates for Commutators of th e ParametricMarcinkiewicz Integrals[J].Journal of SichuanNormal University,2009,(06):179.
[2]王晓峰,夏锦.Dirichlet空间上一类Toeplitz算子[J].四川师范大学学报(自然科学版),2006,(05):577.
 WANG Xiao-feng,XIA Jin(Deparment of Mathematics and Information Science,Guangzhou University,et al.[J].Journal of SichuanNormal University,2006,(06):577.

备注/Memo

备注/Memo:
收稿日期:2018-09-18 接受日期:2018-10-24 基金项目:国家自然科学基金(11826202和11661075) *通信作者简介:周 疆(1968—),男,教授,博士生导师,主要从事调和分析的研究,E-mail:zhoujiang@xju.edu.cn
更新日期/Last Update: 2019-11-04