[1]孙 旻,张克磊*.短脉冲方程的周期波的波长[J].四川师范大学学报(自然科学版),2019,(06):784-788.[doi:10.3969/j.issn.1001-8395.2019.06.011]
 SUN Min,ZHANG Kelei.The Wave Length of Periodic Waves of a Short Pulse Equation[J].Journal of SichuanNormal University,2019,(06):784-788.[doi:10.3969/j.issn.1001-8395.2019.06.011]
点击复制

短脉冲方程的周期波的波长()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2019年06期
页码:
784-788
栏目:
基础理论
出版日期:
2019-11-04

文章信息/Info

Title:
The Wave Length of Periodic Waves of a Short Pulse Equation
文章编号:
1001-8395(2019)06-0784-05
作者:
孙 旻 张克磊*
桂林电子科技大学 数学与计算科学学院, 广西 桂林 541004
Author(s):
SUN Min ZHANG Kelei
School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin 541004, Guangxi
关键词:
短脉冲方程 周期波 周期函数 波长 单调性
Keywords:
short pulse equation periodic wave periodic function wave length monotonicity
分类号:
O357.41
DOI:
10.3969/j.issn.1001-8395.2019.06.011
文献标志码:
A
摘要:
主要研究含参数短脉冲方程的周期波的波长.通过变量变换,短脉冲方程可以转化为一个平面多项式微分系统.当参数α<0时,短脉冲方程具有光滑的周期波,利用动力系统的定性理论和分析的方法研究这个多项式微分系统,其主要结果是给出周期函数T(h)的单调性质.结果表明,周期函数T(h)的单调性受参数β符号的影响.
Abstract:
The wave length of periodic waves of a short pulse equation with parameters is studied.The short pulse equation is transformed into a plane polynomial differential system through variable transformation.When the parameter α<0, the short pulse equation has a smooth periodic wave.The qualitative theory and analysis on dynamical systems are used to study this polynomial differential system.The main result is the monotonicity of T(h), which is affected by the parameter β.

参考文献/References:

[1] SCHÄFER T, WAYNE C E.Propagation of ultra-short optical pulses in cubic nonlinear media[J].Physica,2004,D196(1):90-105.
[2] SAKOVICH A, SAKOVICH S.The short pulse equation is integrable[J].J Phys Soc Jpn,2005,74(1):30-40.
[3] WADATI M, KONNO K, ICHIKAWA Y H.New integrable nonlinear evolution equations[J].J Phys Soc Jpn,1979,47(1):1698-1700.
[4] SAKOVICH A, SAKOVICH S.Solitary wave solutions of the short pulse equation[J].J Physics A:Mathematical and General,2006,39(22):361-367.
[5] CHICONE C, JACOBS M.Bifurcation of critical periods for plane vector fields[J].Trans Am Math Soc,1989,312(2):433-486.
[6] SABATINI M.On the period function of Liénard systems[J].J Diff Eqns,1999,152(2):467-487.
[7] ZHAO Y L.On the monotonicity of the period function for codimension four quadratic system Q4[J].J Diff Eqns,2002,185(1): 370-387.
[8] LI C Z, LU K N.The period function of hyperelliptic Hamiltonians of degree 5 with real critical points[J].Nonlinearity,2008,21(3):465-483.
[9] COLLINS C B.The period function of some polynomial systems of arbitrary degree[J].Differential Integral Equation,1996,9(2):251-266.
[10] CHEN X W, ROMANOVSKI V G, ZHANG W N.Critical periods of perturbations of reversible rigidly isochronous centers[J].J Diff Eqns,2013,251(6):1505-1525.
[11] GARIJO A, VILLADELPRAT J.Algebraic and analytical tools for the study of the period function[J].J Diff Eqns,2014,257(7):2464-2484.
[12] LI J B.Singular Nonlinear Travelling Wave Equations:Bifurcations and Exact Solutions[M].Beijing:Science Press,2013.
[13] CHEN A Y, LI J B, HUANG W T.The monotonicity and critical periods of periodic waves of the φ6 field model[J].Nonlinear Dynamics,2011,63(1/2):205-215.
[14] GEYER A, VILLADELPRAT J.On the wave length of smooth periodic traveling waves of the Camassa-Holm equation[J].J Diff Eqns,2015,259(6):2317-2332.
[15] 郭丽娜,陈爱永,黄文韬.Vakhnenko方程的光滑周期波的波长[J].应用数学和力学,2016,35(9):678-690.

备注/Memo

备注/Memo:
收稿日期:2018-03-17 接受日期:2018-07-04 基金项目:国家自然科学基金(11361017)和广西自然科学基金(2017GXNSFBA198130) *通信作者简介:张克磊(1982—),男,讲师,主要从事偏微分方程理论及其应用的研究,E-mail:keleizhang@163.com
更新日期/Last Update: 2019-11-04