[1]孔祥强.抛物型交换四元数矩阵实表示的性质及应用[J].四川师范大学学报(自然科学版),2019,(06):789-793.[doi:10.3969/j.issn.1001-8395.2019.06.012]
 KONG Xiangqiang.The Property and Application of Real Representation of Parabolic Commutative Quaternion Matrices[J].Journal of SichuanNormal University,2019,(06):789-793.[doi:10.3969/j.issn.1001-8395.2019.06.012]
点击复制

抛物型交换四元数矩阵实表示的性质及应用()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2019年06期
页码:
789-793
栏目:
基础理论
出版日期:
2019-11-04

文章信息/Info

Title:
The Property and Application of Real Representation of Parabolic Commutative Quaternion Matrices
文章编号:
1001-8395(2019)06-0789-05
作者:
孔祥强
菏泽学院 数学与统计学院, 山东 菏泽 274015
Author(s):
KONG Xiangqiang
College of Mathematics and Statistics, Heze University, Heze 274015, Shandong
关键词:
抛物型交换四元数矩阵 实表示 特征值 盖尔圆盘定理
Keywords:
parabolic commutative quaternion matrix real representation eigenvalue Gerschgorin disk theorem
分类号:
O241.6
DOI:
10.3969/j.issn.1001-8395.2019.06.012
文献标志码:
A
摘要:
在抛物型交换四元数实表示的基础上,给出抛物型交换四元数矩阵的实表示,得到交换四元数矩阵特征值存在的充分必要条件和盖尔圆盘定理,并得出交换四元数矩阵的系列数值计算性质.最后,利用算例验证结论的有效性.
Abstract:
In this paper, on the basis of real representation of parabolic commutative quaternions, the real representation of parabolic commutative matrices is given.By using the matix representation, the sufficient and necessary conditions for the existence of eigenvalues of a commutative quaternion matrix and the Gerschgorin disk theorem are obtained.Furthermore, several calculation properties of the commutative quaternion matrix are obtained.Finally, the validity of the conclusion is verified by an example.

参考文献/References:

[1] FARID F O, WANG Q W, ZHANG F.On the eigenvalues of quaternion matrices[J].Linear and Multilinear Algebra,2011,59(4):451-473.
[2] HUANG L, SO W.On left eigenvalues of a quaternion matrices[J].Linear Algebra and Its Applications,2001,323(1):105-116.
[3] PEI S C, CHANG J H, DING J J.Commutative reduced biquaternions and their fourier transform for signal and image processing applications[J].IEEE Transactions on Signal Processing,2004,52(7):2012-2031.
[4] CATONI F, CANNATA R, CATONI V, et al.Two-dimensional hypercomplex numbers and related by trigonometries and geometries[J].Adv Appl Clifford Algebra,2004,14(1):47-68.
[5] CATONI F, CANNATA R, NICHELATTI R, et al.Hypercomplex numbers and functions of hypercomplex variable:a matrix study[J].Adv Appl Clifford Algebra,2005,15(2):183-213.
[6] ALAGOZ Y, ORAL K H, YUCE S.Split quaternion matrices[J].Miskolc Math Notes,2012,13(2):223-232.
[7] OZDEMIR M.The roots of split quaternion[J].Appl Math Lett,2009,22(2):258-263.
[8] OZDEMIR M.On complex split quqternion matrices[J].Adv Appl Clifford Algebra,2013,23(3):625-638.
[9] POGORUY A A, RODRIGUEZ-DAGNINO R M.Some algebraic and analytical properties of coquaternion algebra[J].Adv Appl Clifford Algebra,2010,20(1):79-84.
[10] OZDEMIR M.On eigenvalues of split quaternion matrix[J].Adv Appl Clifford Algebra,2013,23(3):615-623.
[11] SEGRE C.The real representations of complex elements and extension to bicomplex systems[J].Math Ann,1892,40:413-467.
[12] CATONI F, CANNATA R, ZAMPETTI P.An introduction to commutative quaternions[J].Adv Appl Clifford Algebra,2006,16(1):1-28.
[13] KOSAL H H, TOSUN M.Commutative quaternion matrices[J].Adv Appl Clifford Algebra,2014,16(3):769-799.

备注/Memo

备注/Memo:
收稿日期:2018-02-01 接受日期:2018-05-10 基金项目:山东省自然科学基金(ZR2017MA029)、山东省高等教育科技计划项目(J16LI15)和山东省教育科学“十二五”规划“高等教育数学教学专项”重点资助课题(ZBS15004) 作者简介:孔祥强(1983—),男,讲师,主要从事计算数学的研究,E-mail:kong3058@126.com
更新日期/Last Update: 2019-11-04