[1]桑彩丽,赵建兴*.非负矩形张量最大奇异值的上下界[J].四川师范大学学报(自然科学版),2019,(06):794-798.[doi:10.3969/j.issn.1001-8395.2019.06.013]
 SANG Caili,ZHAO Jianxing.Bounds for the Largest Singular Value of Nonnegative Rectangular Tensors[J].Journal of SichuanNormal University,2019,(06):794-798.[doi:10.3969/j.issn.1001-8395.2019.06.013]
点击复制

非负矩形张量最大奇异值的上下界()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2019年06期
页码:
794-798
栏目:
基础理论
出版日期:
2019-11-04

文章信息/Info

Title:
Bounds for the Largest Singular Value of Nonnegative Rectangular Tensors
文章编号:
1001-8395(2019)06-0794-05
作者:
桑彩丽 赵建兴*
贵州民族大学 数据科学与信息工程学院, 贵州 贵阳 550025
Author(s):
SANG Caili ZHAO Jianxing
College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, Guizhou
关键词:
非负张量 矩形张量 奇异值 上下界
Keywords:
nonnegative tensors rectangular tensors singular values upper and lower bounds
分类号:
O151.21
DOI:
10.3969/j.issn.1001-8395.2019.06.013
文献标志码:
A
摘要:
针对非负矩形张量A的最大奇异值λ0(A)的估计问题,利用A的某些元素选取的任意性、分类讨论思想,并结合不等式放缩技巧,给出λ0(A)的上下界,改进了某些已有结果.最后通过数值算例对所得结果进行验证,表明所得估计比已有结果更精确.
Abstract:
For estimates of the largest singular value λ0(A) of a nonnegative rectangular tensor A,using the arbitrariness of some selected elements of A, classification discussion idea and some techniques of inequalities,new bounds for λ0(A) are given and proved to be an improvement of some existing results.The obtained results are verified by numerical examples, which show that the obtained bounds are more accurate than some existing results.

参考文献/References:

[1] QI L Q, DAI H H, HAN D R.Conditions for strong ellipticity and M-eigenvalues[J].Frontiers of Mathematics in China,2009,4(2):349-364.
[2] DAHL G, LEINAAS J M, MYRHEIM J, et al.A tensor product matrix approximation problem in quantum physics[J].Linear Algebra and Its Applications,2007,420(2/3):711-725.
[3] CHANG K C, QI L Q, ZHOU G L.Singular values of a real rectangular tensor[J].J Math Anal Appl,2010,370(1):284-294.
[4] YANG Y N, YANG Q Z.Singular values of nonnegative rectangular tensors[J].Frontiers of Mathematics in China,2011,6(2):363-378.
[5] ZHOU G L, CACCETTA L, QI L Q.Convergence of an algorithm for the largest singular value of a nonnegative rectangular tensor[J].Linear Algebra and Its Applications,2013,438(2):959-968.
[6] CHEN Z M, QI L Q, YANG Q Z, et al.The solution methods for the largest eigenvalue(singular value)of nonnegative tensors and convergence analysis[J].Linear Algebra and Its Applications,2013,439(12):3713-3733.
[7] JOHNSON C R, PENA J M, SZULC T.Optimal gersgorin-style estimation of the largest singular value II[J].Electronic J Linear Algebra,2016,31:679-685.
[8] ZHAO J X, LI C Q.Singular value inclusion sets for rectangular tensors[J].Linear and Multilinear Algebra,2018,66(7):1333-1350.
[9] 赵建兴.非负矩形张量最大奇异值的上界估计[J].吉林大学学报(理学版),2017,55(6):1481-1484.
[10] HE J, LIU Y M, KE H, et al.Bound for the largest singular value of nonnegative rectangular tensors[J].Open Mathematics,2016,14:761-766.
[11] ZHAO J X, SANG C L.An S-type upper bound for the largest singular value of nonnegative rectangular tensors[J].Open Mathematics,2016,14:925-933.
[12] HE J, LIU Y M, TIAN J K, et al.New inclusion sets for singular values[J].J Inequal Appl,2017,2017:64.
[13] ZHAO J X, SANG C L.A new S-type upper bound for the largest singular value of nonnegative rectangular tensors[J].J Inequal Appl,2017,2017:105.
[14] SANG C L.An S-type singular value inclusion set for rectangular tensors[J].J Inequal Appl,2017,2017:141.
[15] ZHAO J X.Two new singular value inclusion sets for rectangular tensors[J].Linear and Multilinear Algebra,2019,67(12):2451-2470.
[16] YAO H M, ZHANG C, LIU L, et al.Singular value inclusion sets of rectangular tensors[J].Linear Algebra and Its Applications,2019,576:181-199.

备注/Memo

备注/Memo:
收稿日期:2018-04-08 接受日期:2018-05-28 基金项目:国家自然科学基金(11501141)和贵州省教育厅科技拔尖人才支持项目(黔教合KY字[2016]066号) *通信作者简介:赵建兴(1981—),男,教授,从事数值代数的研究,E-mail:zhaojianxingmath@163.com
更新日期/Last Update: 2019-11-04