[1]李 宁,李天瑞,陈巧灵.一类四阶非线性波动方程柯西问题解的爆破[J].四川师范大学学报(自然科学版),2019,(06):820-824.[doi:10.3969/j.issn.1001-8395.2019.06.018]
 LI Ning,LI Tianrui,CHEN Qiaoling.Blow-up of the Solution to the Cauchy Problem for a Class of Fourth-order Nonlinear Wave Equations[J].Journal of SichuanNormal University,2019,(06):820-824.[doi:10.3969/j.issn.1001-8395.2019.06.018]
点击复制

一类四阶非线性波动方程柯西问题解的爆破()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2019年06期
页码:
820-824
栏目:
基础理论
出版日期:
2019-11-04

文章信息/Info

Title:
Blow-up of the Solution to the Cauchy Problem for a Class of Fourth-order Nonlinear Wave Equations
文章编号:
1001-8395(2019)06-0820-05
作者:
李 宁 李天瑞 陈巧灵
郑州升达经贸管理学院 应用数学研究所, 河南 郑州 451191
Author(s):
LI Ning LI Tianrui CHEN Qiaoling
Institute of Applied Mathematics, Zhengzhou Shengda University of Economics, Business and Management, Zhengzhou 451191, Henan
关键词:
四阶波动方程 强阻尼项 源项 爆破
Keywords:
forth order wave equation strong damping source term blow-up
分类号:
O175.29
DOI:
10.3969/j.issn.1001-8395.2019.06.018
文献标志码:
A
摘要:
研究非线性阻尼项与源项的竞争对具有强阻尼项的四阶波动方程解的影响.得到源项强于阻尼项时(即当m<p),初始能量为正,且初始数据满足一定条件时,解将在有限时间内爆破,并得到解生命跨度的上界估计.
Abstract:
In this paper, the fourth order wave equation with nonlinear damping and source term is considered.We show that the solution blows up in finite time if m<p, the initial energy is positive and the initial value satisfies a suitable condition.

参考文献/References:

[1] HARAUX A, ZUAZUA E.Decay estimates for some semilinear damped hyperbolic problems[J].Arch Ration Mech Anal,1988,100(2):191-206.
[2] KOPACKOVA M.Remarks on boundary solutions of a semilinear dissipative hypothbolic equation[J].Comment Math Univ Carolin,1989,30(4):713-719.
[3] BALL J.Remarks on blow up and nonexistence theorems for nonlinear evolutions equations[J].Quart J Math Oxford Ser,1977,28(2):473-486.
[4] LEVINE H A.Instability and nonexistence of global solutions of nonlinear wave equation of the form Putt =-Au+F(u)[J].Trans Am Math Soc,1974,192(5):1-21.
[5] LEVINE H A.Some additional remarks on the nonexistence of global solutions to nonlinear wave equation[J].SIAM J Math Anal,1974,5(1):138-146.
[6] GEORGIEV V, TODOROVA G.Existence of a solution of the wave equation with nonlinear damping and source terms[J].J Diff Eqns,1994,109(2):295-308.
[7] MESSAOUDI S A.Global Existense and Nonexistence in a system of Petrovsky[J].J Math Anal Appl,2002,265(2):296-308.
[8] FUCAI L.Global existence and blow up of solutions for a higher-order kirchhoff-type equation with nonlinear dissipation[J].Appl Math Lett,2004,17(11):1409-1414.
[9] 尹丽,韩献军,薛红霞.一类具有非线性阻尼和源项的Petrovsky方程的初边值问题解的爆破[J].数学实践与认识,2010,40(4):168-174.
[10] CHEN W Y, ZHOU Y.Global nonexistence for a semilinear Petrovsky equation[J].Nonlinear Analysis,2009,70(9):3230-3208.
[11] ZHOU Y.Global existence and nonexistence for a nonlinear wave equation with damping and source terms[J].Math Nachr,2005,278(11):1341-1358.
[12] VITTILARO E.Global nonexistence theorems for a class of evolution equations with dissipation[J].Arch Rational Mech Anal,1999,149(2):155-182.
[13] TODORAVA G.Stable and unstable sets for the Cauchy problem for a nonlinear wave with nonlinear damping and source terms[J].J Math Anal Appl,1999,239(2):213-226.
[14] MESSAOUDI S A.Global existence and decay of solutions to a system of Petrovsky[J].Math Sci Res J,2002,6(11):534-541.
[15] CHEN H, LIU G W.Global existence, uniform decay and exponential growth for a class of semilinear wave equation with strong damping[J].Acta Mathematia Scientia,2013,B33(1):41-58.
[16] 李宁,雷倩,杨晗.一类四阶非线性波动方程解的爆破与衰减[J].数学杂志,2016,36(6):1299-1314.

备注/Memo

备注/Memo:
收稿日期:2017-10-27 接收日期:2018-04-06 基金项目:河南省高等学校重点科研项目(17A413004和18A120013)和河南省科技攻关项目(72102210553) 第一作者简介:李 宁(1990—),女,助教,主要从事偏微分方程研究, E-mail:18382405749@163.com
更新日期/Last Update: 2019-11-04