[1]滑亚文,刘以良,周桓毅,等.H2分子在Al17(q=-3~+3)表面吸附的电荷效应[J].四川师范大学学报(自然科学版),2019,(06):830-838.[doi:10.3969/j.issn.1001-8395.2019.06.020]
 HUA Yawen,LIU Yiliang,ZHOU Huanyi,et al.Charge Effect of H2 Adsorption on Alq17(q=-3~+3)Clusters[J].Journal of SichuanNormal University,2019,(06):830-838.[doi:10.3969/j.issn.1001-8395.2019.06.020]
点击复制

H2分子在Al17(q=-3~+3)表面吸附的电荷效应()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
期数:
2019年06期
页码:
830-838
栏目:
基础理论
出版日期:
2019-11-04

文章信息/Info

Title:
Charge Effect of H2 Adsorption on Alq17(q=-3~+3)Clusters
文章编号:
1001-8395(2019)06-0830-09
作者:
滑亚文 刘以良 周桓毅 徐 明
西南民族大学 电气信息工程学院 信息材料四川省高校重点实验室, 四川 成都 610041
Author(s):
HUA Yawen LIU Yiliang ZHOU Huanyi XU Ming
College of Electrical and Information Engineering & Key Lab of Information Materials of Sichuan Provincial Universities, Southwest Minzu University, Chengdu 610041, Sichuan
关键词:
Alq17(q=-3~+3)离子 H2分子吸附 几何结构 电子结构 稳定性
Keywords:
Alq17(q=-3~+3)ions adsorption of H2 molecule geometric structure electronic structure stability
分类号:
O641.12+1; O647.32
DOI:
10.3969/j.issn.1001-8395.2019.06.020
文献标志码:
A
摘要:
Al17团簇具有明显的曲率变化,其几何结构与宏观金属尖端类似.利用密度泛函理论研究H2分子与Alq17(q=-3~+3)团簇离子的相互作用,分析电荷效应对几何结构、稳定性和电荷布居的影响.通过对(Al17H2)q(q=-3~+3)吸附体系的吸附结构、吸附能、振动频率和Mulliken布居的计算与分析,发现H2分子在Alq17(q=-3~-1)阴离子吸附体系上倾向于垂直吸附在曲率较大的尖端位置,并且为顶位吸附,这与宏观的尖端效应类似,但在中性和阳离子吸附体系上,随着电子数的减少,H2分子倾向于平行吸附在曲率相对较小的位置,且主要为桥位和穴位吸附.究其原因,认为阴离子吸附体系中库仑排斥占主导地位,而阳离子吸附体系中电子轨道重叠占据主导作用.吸附稳定性和电荷分布方面,研究发现H2分子在Al3-17表面具有最大的吸附能,在Al2+17表面具有最小的吸附能.电荷主要被Al团簇基底占据,并且除Al17H2以及(Al17H2)3+外,其他吸附体系中2个H原子都携带了电性相反的电荷,靠近阴离子基底的H原子携带正电荷,而靠近阳离子基底的H原子倾向于携带负电荷.
Abstract:
Al17 cluster has gotten apparent change in curvature, which looks like the macroscopic metal tip.Interactions between Alq17(q=-3~+3)clusters and H2 molecules were studied by using density functional theory.And then analysed the charge effects on the geometric structures, stabilities and charge populations.Adsorption structures, adsorption energies, vibrational frequencies and Mulliken populations were calculated.It was found that H2 molecules were prone to being adsorbed vertically on tip sites of the Alq17(q=-3~-1)anionic clusters and most of them are atop adsorptions, which is similar to the macroscopic tip effect.Whereas, for neutral and cationic Alq17(q=0~+3)clusters, H2 molecules tended to be adsorbed parallelly on atomic sites with small curvatures.And most of them are bridge and hollow adsorptions.We interpreted them as coulomb repulsion and orbital overlap for the anionic and cationic adsorption systems, respectively.With respect to adsorption energies and charge distribution,(Al17H2)3- has the largest adsorption energies, while(Al17H2)2+ has the smallest adsorption energies.Al cluster adsorbents carry most of the charges.And two H atoms in the adsorption complexes carry opposite charges except Al17H2 and(Al17H2)3+.Specifically, H atoms adjacent to the anionic and cationic adsorbents carry positive and negative charges, respectively.

参考文献/References:

[1] HUIDOBRO-MEEZS I L, ORGAZ E.Investigation of the spin competition in the Al6 cluster[J].J Phys Chem,2017,C121(21):11872-11879.
[2] HALDER A, LIANG A, KRESIN V V.A novel feature in aluminum cluster photoionization spectra and possibility of electron pairing at T100 K[J].Nano Letters,2015,15(2):1410-1413.
[3] ROACH P J, WOODWARD W H, CASTLEMAN A W, et al.Complementary active sites cause size-selective reactivity of aluminum cluster anions with water[J].Science,2009,323(5913):492-495.
[4] YUAN Q H, LI J, LIU Z F.Dynamic factors in the reactions between the magic cluster Al-13 and HCl/HI[J].Phys Chem Chem Phys,2011,13(20):9871-9879.
[5] REBER A C, ROACH P J, WOODWARD W H, et al.Edge-induced active sites enhance the reactivity of large aluminum cluster anions with alcohols[J].J Phys Chem,2012,A116(30):8085-8091.
[6] ÁLVAREZ-BARCIA S, FLORES J R.Size, adsorption site, and spin effects in the reaction of Al clusters with water molecules:Al(17)and Al(28)as examples[J].J Phys Chem,2012,A116(30):8040-8050.
[7] ALEXANDROU E I, GROSS A, BACALIS N C.Theoretical investigation of the interaction of CH(4)with Al(2)and Al(3)neutral and charged clusters[J].J Chem Phys,2010,132(15):154701.
[8] WANG L, KUKLJA M M.First-principles study of small aluminum clusters:oxygen adsorptions, oxidation and phase stability[J].J Phys Chem Solids,2010,71(2):140-144.
[9] XIANG H, KANG J, WEI S H, et al.Shape control of Al nanoclusters by ligand size[J].J American Chemical Society,2009,131(24):8522-8526.
[10] SHIMOJO F, OHMURA S, KALIA R K, et al.Molecular dynamics simulations of rapid hydrogen production from water using aluminum clusters as catalyzers[J].Phys Rev Lett,2010,104(12):126102.
[11] GRUBISIC A, LI X, STOKES S T, et al.Closo-alanes(Al4H4, AlnHn+2,4≤n≤8):a new chapter in aluminum hydride chemistry[J].J American Chemical Society,2007,129(18):5969-5975.
[12] HENRY D J, YAROVSKY I.Dissociative adsorption of hydrogen molecule on aluminum clusters:effect of charge and doping[J].J Phys Chem,2009,A113(11):2565-2571.
[13] WANG L, ZHAO J, ZHOU Z, et al.First-principles study of molecular hydrogen dissociation on doped Al12X(X=B,Al,C,Si,P,Mg, and Ca)clusters[J].J Comput Chem,2009,30(15):2509-14.
[14] PINO I, KROES G J, VAN HEMERT M C.Hydrogen dissociation on small aluminum clusters[J].J Chem Phys,2010,133(18):184304.
[15] MOC J.Physisorption and dissociative chemisorption of H2 on sub-nanosized Al-13 anion cluster:ab initio study[J].European Phys J,2011, D61(2):397-402.
[16] MOC J.Dissociation of multiple hydrogen molecules on the three-dimensional aluminium cluster:theoretical study[J].Theoretical Chemistry Accounts,2013,132(8):1378
[17] KUMAR D, KRISHNAMURTY S, PAL S.Dissociative adsorption of molecular hydrogen on BN-doped graphene-supported aluminum clusters[J].J Phys Chem,2017,C121(47):26493-26498.
[18] VANBUEL J, FERN('overA)NDEZ E M, FERRARI P, et al.Hydrogen chemisorption on singly vanadium-doped aluminum clusters[J].Chemistry European J,2017,A23(62):15638-15643.
[19] LIU Y, HUA Y, JIANG M, et al.Theoretical study of the geometries and dissociation energies of molecular water on neutral aluminum clusters Aln(n=2-25)[J].J Chem Phys,2012,136(8):084703.
[20] LIU Y, HUA Y, JIANG M, et al.Different orientations of molecular water on neutral and charged aluminium clusters Al17(n=0-3)[J].European Phys J,2013,D67(9):194.
[21] SINGH R, TRIPATHI V K, VATSA R K, et al.Nanosecond laser-cluster interactions at 109-1012 W/cm2 [J].Phys Plasmas,2017,24(8):082111.
[22] NIU D, LI H, LIANG F, et al.Controllable generation of highly stripped ions with different charges by nanosecond laser ionization of clusters at different wavelengths[J].Appl Phys Lett,2005,87(3):2003-2006.
[23] MANIL B, MAUNOURY L, HUBER B A, et al.Highly charged clusters of fullerenes:charge mobility and appearance sizes[J].Phys Rev Lett,2003,91(21):1-4.
[24] 李佐,廖大麟,罗树常,等.含能材料HBT中氢键相互作用的第一性原理研究[J].四川师范大学学报(自然科学版),2017,40(4):511-515.
[25] 陈朝华,刘凯,谢尊.TMAu5(TM=Y-Cd)团簇稳定结构与电磁特性的第一性原理[J].四川师范大学学报(自然科学版),2018,41(4):528-534.
[26] 於造林,宋亚兰,马超杰,等.水镁石与方镁石的热力学及热导特征的第一性原理研究 [J].四川师范大学学报(自然科学版),2018,41(6):794-799.
[27] BECKE A D.A multicenter numerical integration scheme for polyatomic molecules[J].J Chem Phys,1988,88(4):2547.
[28] PERDEW J P, WANG Y.Accurate and simple analytic representation of the electron-gas correlation energy[J].Phys Rev,1992,B45(23):13244-13249.
[29] LIDE D R.Handbook of Chemistry and Physics on CD-ROM[M].Florida:CRC Press,2003.
[30] CAI M F, DZUGAN T P, BONDYBEY V E.Fluorescence studies of LASER vaporized aluminum dimer:evidence for a ground state of aluminum dimer[J].Chem Phys Lett,1989,155(4/5):430-436.
[31] HERZBERG G.Molecular Spectra and Molecular Structure I:Spectra of Diatomic Molecules[M].2nd ed.New York:Van Nostrand Reinhold Company,1950.
[32] HUBER K P, HERZBERG G.Molecular Spectra and Molecular Structure IV:Constants of Diatomic Molecules[M].New York:Van Nostrand Reinhold Company,1979.

备注/Memo

备注/Memo:
收稿日期:2018-07-17 接受日期:2018-09-11 基金项目:西南民族大学中央高校基本科研业务费专项资金(2019NYB07) 第一作者简介:滑亚文(1986—),女,实验师,主要从事团簇和分子的结构及性质的研究,E-mail:yawen0215@163.com
更新日期/Last Update: 2019-11-04