[1]芦鹏飞.二维锡烯材料的若干进展[J].四川师范大学学报(自然科学版),2020,43(01):1-20.[doi:10.3969/j.issn.1001-8395.2020.01.001]
 LU Pengfei.Recent Development of Two-dimensional Stanene[J].Journal of SichuanNormal University,2020,43(01):1-20.[doi:10.3969/j.issn.1001-8395.2020.01.001]
点击复制

二维锡烯材料的若干进展()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
43卷
期数:
2020年01期
页码:
1-20
栏目:
特约专稿
出版日期:
2019-12-04

文章信息/Info

Title:
Recent Development of Two-dimensional Stanene
文章编号:
1001-8395(2020)01-0001-20
作者:
芦鹏飞
北京邮电大学 信息光子学与光通信研究院, 北京 100876
Author(s):
LU Pengfei
Institute of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876
关键词:
拓扑绝缘体 锡烯 性能调控 复合材料 功能材料
Keywords:
topological insulator stanene performance modification heterostructures functional materials
分类号:
O649
DOI:
10.3969/j.issn.1001-8395.2020.01.001
文献标志码:
A
摘要:
二维锡烯是一种潜在的可室温工作的拓扑绝缘体,有望进行无损耗的电子输运,在未来高集成度的电子学器件和量子器件领域具有重要的意义.理论方面,研究人员系统模拟了锡烯物理性质,发现其具有若干新奇的特性.实验方面,主要集中在单层锡烯的制备.系统梳理金属锡到二维锡烯的发展及制备进程,介绍锡烯的主要物理性质、相关结构及调控、锡烯复合及功能材料,最后简要总结锡烯面临的机遇和挑战.
Abstract:
Two-dimensional(2D)stanene is one kind of potential Topological Insulator(TI)materials that can work at room temperature, and is expected to conduct electricity with “100 percent efficiency”, which is important for the next-generation high-integration electronic and quantum devices. In theoretical aspects, fundamental physical properties were calculated and many novel characteristics were presented. In experimental aspects, researchers mainly focused on the growth of single layer stanene. In this paper, we will review on recent development and growth process of stanene from 3D metal Sn to 2D stanene, introduce the main physical properties, related geometric structure, heterostructures and applications of stanene, and summary the opportunities and challenges it faces finally.

参考文献/References:

[1] KANE C L, MELE E J. Quantum spin Hall effect in graphene[J]. Physical Review Letters,2005,95(22):226801.
[2] ZHANG S C, BERNEVIG B A, HUGHES T. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J]. Science,2006,314(5806):1757-1761.
[3] KONIG M, WIEDMANN S, BRUNE C, et al. Quantum spin Hall insulator state in HgTe quantum wells[J]. Science,2007,318(5851):766-770.
[4] LIANG F, KANE C L. Topological insulators with inversion symmetry[J]. Physical Review,2007,B76:045302.
[5] HSIEH D, QIAN D, WRAY L, et al. A topological Dirac insulator in a quantum spin Hall phase[J]. Nature,2008,452(7190):970-974.
[6] ZHANG H, LIU C X, QI X L, et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface[J]. Nature Physics,2009,5(6):438-442.
[7] XIA Y, QIAN D, HSIEH D, et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface[J]. Nature Physics,2015,5(6):398-402.
[8] CHEN Y L, ANALYTIS J G, CHU J H, et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3[J]. Science,2009,325(5937):178-181.
[9] MOORE J. Topological insulators:the next generation[J]. Nature Physics,2009,5(6):378-380.
[10] LIU C C, JIANG H, YAO Y. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin[J]. Physical Review,2011,B84(19):195430.
[11] GARCIA J C, DE LIMA D B, ASSALI L V C, et al. Group IV graphene- and graphane-like nanosheets[J]. Journal of Physical Chemistry,2011,C115(27):13242-13246.
[12] XU Y, YAN B, ZHANG H J, et al. Large-gap quantum spin Hall insulators in tin films[J]. Physical Review Letters,2013,111(13):136804.
[13] ZHU F, CHEN W J, XU Y, et al. Epitaxial growth of two-dimensional stanene[J]. Nature Materials,2015,14:1020-1025.
[14] SAXENA S, CHAUDHARY R P, SHUKLA S. Stanene:atomically thick free-standing layer of 2d hexagonal tin[J]. Scientific Reports,2016,6:31073.
[15] GAO J F, ZHANG G, ZHANG Y W. Exploring Ag(111)substrate for epitaxially growing monolayer stanene:a first-principles study[J]. Scientific Reports,2016,6:29107.
[16] YUHARA J, FUJII Y, NISHINO K, et al. Large area planar stanene epitaxially grown on Ag(111)[J]. 2D Materials,2018,5(2):025002.
[17] DENG J, XIA B, MA X, et al. Epitaxial growth of ultraflat stanene with topological band inversion[J]. Nature Materials,2018,17:1081-1086.
[18] TAO L, YANG C, WU L, et al. Tension-induced mechanical properties of stanene[J]. Modern Physics Letters,2016,B30(12):1650146.
[19] SHI Z, SINGH C V. The ideal strength of two-dimensional stanene may reach or exceed the Griffith strength estimate[J]. Nanoscale,2017,9:7055-7062.
[20] SHODJA H M, OJAGHNEZHAD F, ETEHADIEH A, et al. Elastic moduli tensors, ideal strength, and morphology of stanene based on an enhanced continuum model and first principles[J]. Mechanics of Materials,2017,110:1-15.
[21] MOJUMDER S, AMIN A A, ISLAM M M. Mechanical properties of stanene under uniaxial and biaxial loading:a molecular dynamics study[J]. Journal of Applied Physics,2015,118(12):183.
[22] KHAN A I, PAUL R, SUBRINA S. Characterization of thermal and mechanical properties of stanene nanoribbons:a molecular dynamics study[J]. RSC Advances,2017,7(80):50485-50495.
[23] JOHN R, MERLIN B. Optical properties of graphene, silicene, germanene, and stanene from IR to far UV:a first principles study[J]. Journal of Physics and Chemistry of Solids,2017,110:307-315.
[24] FADAIE M, SHAHTAHMASSEBI N, ROKNABAD M R, et al. First-principles investigation of armchair stanene nanoribbons[J]. Physics Letters,2018,A382(4):180-185.
[25] XIONG W, XIA C, WANG T, et al. Tuning electronic structures of the stanene monolayer via defects and transition-metal-embedding:spin-orbit coupling[J]. Physical Chemistry Chemical Physics,2016,18(41):28759-28766.
[26] XING D X, REN C C, ZHANG S F, et al. Tunable electronic and magnetic properties in stanene by 3d transition metal atoms absorption[J]. Superlattices and Microstructures,2017,103:139-144.
[27] DAI X Q, ZHAO M Y, ZHAO R M, et al. Biaxial tensile strain modulates magnetic properties of the 3d transition metal doped stanene[J]. Superlattices and Microstructures,2017,106:33-49.
[28] QI J, HU K, LI X. Electric control of the edge magnetization in zigzag stanene nanoribbons from first principles[J]. Physical Review Applied,2018,10(3):034048.
[29] XIONG W, XIA C, DU J, et al. Asymmetric hydrogenation-induced ferromagnetism in stanene nanoribbons considering electric field and strain effects[J]. Journal of Materials Science,2018,53(1):657-666.
[30] TANG P, CHEN P, CAO W, et al. Stable two-dimensional dumbbell stanene:a quantum spin Hall insulator[J]. Physical Review,2014,B90(12):121408.
[31] XU Y, TANG P, ZHANG S C. Large-gap quantum spin Hall states in decorated stanene grown on a substrate[J]. Physical Review,2015,B92(8):081112.
[32] WANG D, CHEN L, WANG X, et al. The effect of substrate and external strain on electronic structures of stanene film[J]. Physical Chemistry Chemical Physics,2015,17(40):26979-26987.
[33] JI W, ZHANG C, DING M, et al. Stanene cyanide:a novel candidate of quantum spin Hall insulator at high temperature[J]. Scientific Reports,2015,5(1):18604.
[34] MATUSALEM F, BECHSTEDT F, MARQUES M, et al. Quantum spin Hall phase in stanene-derived overlayers on passivated SiC substrates[J]. Physical Review,2016,B94(24):241403.
[35] ZHANG H, ZHANG J, ZHAO B, et al. Quantum anomalous Hall effect in stable dumbbell stanene[J]. Applied Physics Letters,2016,108(8):082104.
[36] ZHANG H, ZHOU T, ZHANG J, et al. Quantum anomalous Hall effect in stanene on a nonmagnetic substrate[J]. Physical Review,2016,B94(23):235409.
[37] HOUSSA M, VAN DEN BROEK B, IORDANIDOU K, et al. Topological to trivial insulating phase transition in stanene[J]. Nano Research,2016,9(3):774-778.
[38] HUANG C, ZHOU J, WU H, et al. Quantum phase transition in germanene and stanene bilayer:from normal metal to topological insulator[J]. Journal of Physical Chemistry Letters,2016,7(10):1919-1924.
[39] ZHOU H, CAI Y, ZHANG G, et al. Quantum thermal transport in stanene[J]. Physical Review,2016,B94(4):045423.
[40] NISSIMAGOUDAR A S, MANJANATH A, SINGH A K. Diffusive nature of thermal transport in stanene[J]. Physical Chemistry Chemical Physics,2016,18(21):14257-14263.
[41] ZAVEH S J, ROKNABADI M R, MORSHEDLOO T, et al. Electronic and thermal properties of germanene and stanene by first-principles calculations[J]. Superlattices and Microstructures,2016,91:383-390.
[42] NAVID I A, SUBRINA S. Thermal transport characterization of carbon and silicon doped stanene nanoribbon:an equilibrium molecular dynamics study[J]. RSC Advances,2018,8(55):31690-31699.
[43] PENG X F, ZHOU X, JIANG X T, et al. Thermal conductance of electrons in graphene and stanene ribbons modulated via electron-phonon coupling[J]. Journal of Applied Physics,2017,122(5):054302.
[44] DAS S, RAKIB T, MOJUMDER S, et al. Influence of defects on thermal properties of stanene[C]//AIP Conference Proceedings. Dhaka:AIP Publishing,2017,1851(1):020035.
[45] CHERUKARA M J, NARAYANAN B, KINACI A, et al. Ab initio-based bond order potential to investigate low thermal conductivity of stanene nanostructures[J]. Journal of Physical Chemistry Letters,2016,7(19):3752-3759.
[46] EZAWA M. Photo-induced topological superconductor in silicene, germanene, and stanene[J]. Journal of Superconductivity and Novel Magnetism,2015,28(4):1249-1253.
[47] SHAIDU Y, AKIN-OJO O. First principles predictions of superconductivity in doped stanene[J]. Computational Materials Science,2016,118:11-15.
[48] KORE A, SINGH P. First principle study of heterostructure of BaBi3-stanene for topological superconductor applications[C]//AIP Conference Proceedings. Bikaner:AIP Publishing,2018,1953(1):110032.
[49] LIAO M, ZANG Y, GUAN Z Y, et al. Superconductivity in few-layer stanene[J]. Nature Physics,2018,14:344-348.
[50] YUAN M, JI W, REN M, et al. Quantum spin Hall state in cyanided dumbbell stanene[J]. RSC Advances,2016,6(89):86089-86094.
[51] WANG Y, JI W, ZHANG C, et al. Large-gap quantum spin Hall state in functionalized dumbbell stanene[J]. Applied Physics Letters,2016,108(7):073104.
[52] LI X, LI H, ZUO X, et al. Chemically functionalized penta-stanene monolayers for light harvesting with high carrier mobility[J]. Journal of Physical Chemistry,2018,C122(38):21763-21769.
[53] LI S S, ZHANG C W. Tunable electronic structures and magnetic properties in two-dimensional stanene with hydrogenation[J]. Materials Chemistry & Physics,2016,173:246-254.
[54] ZHANG R, WANG P, LI F, et al. Room temperature quantum spin Hall insulator in ethynyl-derivative functionalized stanene films[J]. Scientific Reports,2016,6:18879.
[55] GARG P, CHOUDHURI I, MAHATA A, et al. Band gap opening in stanene induced by patterned B-N doping[J]. Physical Chemistry Chemical Physics,2017,19(5):3660-3669.
[56] ABBASI A, SARDROODI J J. Electronic structure tuning of stanene monolayers from DFT calculations:effects of substitutional elemental doping[J]. Applied Surface Science,2018,456:290-301.
[57] NAVID I A, SUBRINA S. Thermal transport characterization of carbon and silicon doped stanene nanoribbon:an equilibrium molecular dynamics study[J]. RSC Advances,2018,55(8):31690-31699.
[58] 李登峰. 掺杂扶手型锡烯纳米带的电子结构及输运性质理论研究[J]. 功能材料,2018,49(8):8150-8154,8160.
[59] WU L, LU P, BI J, et al. Structural and electronic properties of two-dimensional stanene and graphene heterostructure[J]. Nanoscale Research Letters,2016,11(1):525.
[60] YUN F F, CORTIE D L, WANG X L. Tuning the electronic structure in stanene/graphene bilayers using strain and gas adsorption[J]. Physical Chemistry Chemical Physics,2017,19(37):25574-25581.
[61] CHEN X, MENG R, JIANG J, et al. Electronic structure and optical properties of graphene/stanene heterobilayer[J]. Physical Chemistry Chemical Physics,2016,18(24):16302-16309.
[62] MONDAL C, KUMAR S, PATHAK B. Topologically protected hybrid states in graphene-stanene-graphene heterojunction[J]. Journal of Materials Chemistry,2018,C6(8):1920-1925.
[63] KHAN A I, PAUL R, SUBRINA S. Thermal transport in graphene/stanene hetero-bilayer nanostructures with vacancies:an equilibrium molecular dynamics study[J]. Rsc Advances,2017,7(71):44780-44787.
[64] GOU J, KONG L, LI H, et al. Strain-induced band engineering in monolayer stanene on Sb(111)[J]. Physical Review Materials,2017,1(5):054004.
[65] FANG Y, HUANG Z Q, HSU C H, et al. Quantum spin Hall states in stanene/Ge(111)[J]. Scientific Reports,2015,5:14196.
[66] WANG M, LIU L, LIU C C, et al. van der Waals heterostructures of germanene, stanene and silicene with hexagonal boron nitride and their topological domain walls[J]. Physical Review,2016,B93(15):155412.
[67] KHAN A I, CHAKRABORTY T, ACHARJEE N, et al. Stanene-hexagonal boron nitride heterobilayer: structure and characterization of electronic property[J]. Scientific Reports,2017,7(1):16347.
[68] XIONG W, XIA C, DU J, et al. Band engineering of the MoS2/stanene heterostructure:strain and electrostatic gating[J]. Nanotechnology,2017,28(19):195702.
[69] CHEN X, LI Y, TANG J, et al. First-principles study on electronic properties of stanene/WS2 monolayer[J]. Modern Physics Letters,2017,B31(29):1.
[70] WANG H, PI S T, KIM J, et al. Possibility of realizing quantum spin Hall effect at room temperature in stanene/Al2O3(0001)[J]. Physical Review,2016,B94(3):035112.
[71] ARAIDAI M, KUROSAWA M, OHTA A, et al. First-principles study on adsorption structure and electronic state of stanene on α-alumina surface[J]. Japanese Journal of Applied Physics,2017,56(9):095701.
[72] CAO H, ZHOU Z, ZHOU X, et al. Tunable electronic properties and optical properties of novel stanene/ZnO heterostructure:first-principles calculation[J]. Computational Materials Science,2017,139:179-184.
[73] DING Y, WANG Y. Quasi-free-standing features of stanene/stanane on InSe and GaTe nanosheets:a computational study[J]. The Journal of Physical Chemistry,2015,C119(49):27848-27854.
[74] CHEN X, TAN C, YANG Q, et al. Ab initio study of the adsorption of small molecules on stanene[J]. The Journal of Physical Chemistry,2016,C120(26):13987-13994.
[75] NAGARAJAN V, CHANDIRAMOULI R. Adsorption behavior of NH3, and NO2, molecules on stanene and stanane nanosheets:a density functional theory study[J]. Chemical Physics Letters,2018,695:162-169.
[76] ABBASI A, SARDROODI J J. An innovative method for the removal of toxic sox, molecules from environment by TiO2/stanene nanocomposites:a first-principles study[J]. Journal of Inorganic & Organometallic Polymers & Materials,2018(3):1-13.
[77] ABBASI A, SARDROODI J J. Exploration of sensing of nitrogen dioxide and ozone molecules using novel TiO2/Stanene heterostructures employing DFT calculations[J]. Applied Surface Science,2018,442:368-381.
[78] ABBASI A, SARDROODI J J, EBRAHIMZADEH A R, et al. Theoretical study of the structural and electronic properties of novel stanene-based buckled nanotubes and their adsorption behaviors[J]. Applied Surface Science,2018,435:733-742.
[79] ABBASI A, SARDROODI J J. Interaction of sulfur trioxide molecules with armchair and zigzag stanene-based nanotubes:electronic properties exploration by DFT calculations[J]. Adsorption:Journal of the International Adsorption Society,2018,24(1):1-16.
[80] ABBASI A, SARDROODI J J. Density functional theory investigation of the interactions between the buckled stanene nanosheet and XO2 gases(X=N,S,C)[J]. Computational and Theoretical Chemistry,2018,1125:15-28.
[81] BHUVANESWARI R, NAGARAJAN V, CHANDIRAMOULI R. Adsorption studies of trimethyl amine and n-butyl amine vapors on stanene nanotube molecular device:a first-principles study[J]. Chemical Physics,2018,501:78-85.
[82] WANG T, ZHAO R, ZHAO M, et al. Effects of applied strain and electric field on small-molecule sensing by stanene monolayers[J]. Journal of Materials Science,2017,52(9):5083-5096.
[83] GAO G, JIAO Y, MA F, et al. Versatile two-dimensional stanene-based membrane for hydrogen purification[J]. International Journal of Hydrogen Energy,2017,42(8):5577-5583.
[84] GAO G, JIAO Y, JIAO Y, et al. Calculations of helium separation via uniform pores of stanene-based membranes[J]. Beilstein Journal of Nanotechnology,2015,6(1):2470.
[85] KADIOGLU Y, ERSAN F, GÖKHAN GÖKO(ˇoverG)LU, et al. Adsorption of alkali and alkaline-earth metal atoms on stanene:a first-principles study[J]. Materials Chemistry & Physics,2016,180:326-331.
[86] MORTAZAVI B, DIANAT A, CUNIBERTI G, et al. Application of silicene, germanene and stanene for Na or Li ion storage:a theoretical investigation[J]. Electrochimica Acta,2016,213(213):865-870.
[87] WU L, LU P, QUHE R, et al. Stanene nanomesh as anode material for Na-ion batteries[J]. Journal of Materials Chemistry,2018,A6:7933-7941.
[88] MARIN E G, MARIAN D, IANNACCONE G, et al. Tunnel-field-effect spin filter from two-dimensional antiferromagnetic stanene[J]. Physical Review Applied,2018,10(4):044063.

备注/Memo

备注/Memo:
收稿日期:2019-04-01 接受日期:2019-04-19 基金项目:国家自然科学基金(61675032)和国家重点研发计划项目(2017YFB0405100) 作者简介:芦鹏飞(1976—),男,教授,博士生导师,主要从事低维材料和器件的设计与模拟研究,E-mail:photon.bupt@gmail.com
更新日期/Last Update: 2019-12-04