[1]杜烁玉,李耀堂*.随机矩阵α-型和Brauer-型特征值包含区域及其应用[J].四川师范大学学报(自然科学版),2020,43(01):21-26.[doi:10.3969/j.issn.1001-8395.2020.01.002]
 DU Shuoyu,LI Yaotang.α-type and Brauer-type Inclusion Regions of Eigenvalues for Stochastic Matrices and Their Applications[J].Journal of SichuanNormal University,2020,43(01):21-26.[doi:10.3969/j.issn.1001-8395.2020.01.002]
点击复制

随机矩阵α-型和Brauer-型特征值包含区域及其应用()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
43卷
期数:
2020年01期
页码:
21-26
栏目:
基础理论
出版日期:
2019-12-04

文章信息/Info

Title:
α-type and Brauer-type Inclusion Regions of Eigenvalues for Stochastic Matrices and Their Applications
文章编号:
1001-8395(2020)01-0021-06
作者:
杜烁玉 李耀堂*
云南大学 数学与统计学院, 云南 昆明 650000
Author(s):
DU Shuoyu LI Yaotang
School of Mathematics and Statistics, Yunnan University, Kunming 650000, Yunnan
关键词:
随机矩阵 特征值包含区域 谱隙 非奇异
Keywords:
stochastic matrix eigenvalue inclusion regions spectral gap non-singularity
分类号:
O241.1
DOI:
10.3969/j.issn.1001-8395.2020.01.002
文献标志码:
A
摘要:
应用修正矩阵理论和α-型及Brauer-型矩阵特征值包含区域,获得随机矩阵非1特征值新的α-型和Brauer-型特征值包含区域及其非奇异的充分条件.最后用数值例子验证所得的包含区域比一些已有的包含区域更精确,且能用其更好地估计随机矩阵的谱隙.
Abstract:
By combining the modified matrix theory with the α-type eigenvalues inclusion regions and Brauer-type eigenvalues inclusion regions, a new α-type eigenvalues inclusion regions and Brauer-type eigenvalues inclusion regions, a new pe and a new Brauer-type eigenvalues inclusion region of eigenvalues different from 1 and non-singularity sufficient conditions of a stochastic matrix are obtained. At last, some examples are given to show that these inclusion regions are more accurate than some existing inclusion regions and can be used to better estimate the spectral gap of a stochastic matrix.

参考文献/References:

[1] WISHART J. The generalized product moment distribution in samples from a normal multivariate population[J]. Biometrika,1928(20):32-52.
[2] LOLOUX L, CIZEAU P, POTTERS M, et al. Random matrix theory and financial correlations[J]. Int J Theory Appl Fianac,2000,3(3):391-397.
[3] FARHADIAN R, ASADIAN N. On the helmert matrix and application in Stochastic processes[J]. Inter J Math & Comput Sci,2017,12(2):107-115.
[4] SERGEY B, LAWRENCE P. The anotomy of a large-scale hypertextual web search engine[J]. Computer Networks and ISDN Systems,1998(30):107-117.
[5] NORRIS J R. Markov Chains[M]. Cambridge:Cambridge University Press,1997.
[6] SENETA E. Nonnegative Matrices and Markov Chains[M]. Berlin:Springer-Verlag,2004.
[7] KIRKLAND S. Girth and subdominant eigenvalues for stochastic matrices[J]. Electronic J Linear Algebra,2005(12):25-41.
[8] DEIFT P. Universality for mathematical and physical systems[C]//Pro Inter Congress Math. Madrid:Europ Math Soc,2007,1:125-152.
[9] CVETKOVIC L, KOSTIC V, PEÑA J M. Eigenvalue localization renements for matrices related to positivity[J]. SIAM J Matrix Anal Appl,2011,32(3):771-784.
[10] SHEN S Q, YU J, HUANG T Z. Some classes of nonsingular matrices with applications to localize the real eigenvalues of real matrices[J]. Linear Algebra and Its Application,2014,447:74-87.
[11] LI C Q, LIU Q B, LI Y T. Gergorin-type and Brauer-type eigenvalue localization sets of stochastic matrices[J]. Linear and Multilinear Algebra,2015,11(63):2159-2170.
[12] CVETKOVIC L. H-matrix theory vs eigenvalue localization[J]. Numerical Algorithms,2006,42(3/4):229-245.
[13] 陈公宁. 矩阵理论与应用[M]. 2版. 北京:科学出版社,2007.
[14] MINC H. Nonnegative Matrices[M]. New York:Wiley Interscience,1988.
[15] BERKOLAIKO G. Spectral gap of doubly stochastic matrices generated from equidistributed unitary matrices[J]. Physics,2001,34(22):319-326.

相似文献/References:

[1]冯志明,宋际平.实正交矩阵的子矩阵的幂的迹的渐进分布[J].四川师范大学学报(自然科学版),2012,(01):49.
 FENG Zhi ming,SONG Ji ping.Asymptotic Distributions of Traces of Powers of the Submatrices of Real Orthogonal Matrices[J].Journal of SichuanNormal University,2012,(01):49.

备注/Memo

备注/Memo:
收稿日期:2018-05-24 接受日期:2018-12-20 基金项目:国家自然科学基金(11361074) *通信作者简介:李耀堂(1958—),男,教授,博士生导师,主要从事矩阵理论及其应用的研究,E-mail:liyaotang@ynu.edu.cn
更新日期/Last Update: 2019-12-04